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PREFACE.

ABOUT ten years ago my attention was drawn by a

-^-
pamphlet of Mr H. M. Taylor to the possibility of

arranging the twenty-seven straight lines on a cubic surface

p in position by geometrical construction, and hence to deter-

mine the form of the surface.

After constructing several models, I did not continue the

^ series, for I subsequently found that a complete set had been

made in Germany, and had been exhibited by Klein at the

Chicago Exhibition. Copies of these models can be purchased.

Still the models described in this book are sufficient to

give an idea of the shape of a cubic surface, and to illustrate

2 the changes that take place under certain conditions.

The object of this book is to give an outline of analytical
/: and geometrical methods that are used in treating of cubic

surfaces, not taking the more advanced part of the subject,

but considering mainly anything that may help to the

construction of models.

The latter part of the book is devoted to a description of

the shapes of the surfaces.

The Cambridge Philosophical Society and The Quarterly

Mathematical Journal have kindly published many papers of

<
'
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VI PREFACE

mine upon the subject, including some geometrical pro-

positions to be found in the third chapter. Many of the

diagrams have already appeared in the above-mentioned

journals.

The text-books on Solid Geometry by Frost and Salmon

furnish most of the facts that are necessary to form equations

of cubic surfaces, but in the works of Cayley the subject

is most completely considered from an analytical point

of view.

Reye has given a series of lectures on Geometry of

Position in which cubic surfaces are treated by methods of

projection. The first part of these lectures has appeared in

an English translation by Thos. Holgate, and a very good

summary of his methods is given in the Encyclopaedia
Sritannica under the heading Geometry. The particular

lectures on Cubic Surfaces are to be found in a French

translation published many years ago.

In addition to the books already referred to I have quoted

largely from Klein, Zeuthen, and indirectly from Sturm,

chiefly from English or French translations of these authors.

The equations, a list of which is given in the first

chapter, are taken from a paper of Dr Schlafli published

by Dr Cayley.

W. H. B.

July 1905.
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INTRODUCTION.

A CUBIC surface may be represented by an equation of the

third degree in Cartesian coordinates. If this equation be

expressed in the form uvw + xyz = where x, y, z, u, v, w are

expressions involving the coordinates in the first degree, then

u =
0, v = 0, w = are triple tangent planes to the surface,

and any straight lines represented by the equations u 0, x =
;

u0, y 0', are straight lines on the surface.

A plane such as u = is a triple tangent plane because it

touches the surface at the three angular points of the triangle
in which the three planes x Q, y -

0, 2 = meet it. The general

theory of surfaces is fully discussed in Dr Salmon's Geometry of
Three Dimensions (Chapter XL), and Dr Frost also supplies all

necessary information on this subject in his Text-book on Solid

Geometry.

When Dr Schlafli investigated the number of triple tangent

planes and straight lines on a cubic surface, the question resolved

itself into one of algebraical transformation, namely, In how

many ways can any equation of the third degree be put into

the form uvw + xyz = 01 Further, in how many of these trans-

formations are u, v, w, x, y, z real, and in how many are they

imaginary ?

It is clear that any equation of the third degree can be

expressed in the form uvw + xyz - 0, for by equating coeffi-

cients we obtain the necessary equations to find the coefficients

of the variables in the functions u, v, w and no more.
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To determine the reality of the triple tangent planes Dr Schlafli

used the following method. [Phil. Trans. Vol. 153.]

If we assume Aw + Bv + Cw + Dx + Ey + Fz = 0, and in this

expression equate the coefficients of the variable coordinates,

and the constant term to zero, we find only four equations
between the six unknown quantities A, B, C, D, E, F. As the

ratios of these quantities only are required, if we suppose the

four equations used to express C, D, E, F in terms of A and B,

we only require one condition more to express the ratio of

A to B.

We remember that this condition is to be selected so that

the equation uvw + xyz may be expressed in another of the

same form.

The condition is suggested by the identical equation

Au(Bv + Dx) (Cw + Dx) + Dx(ku + Ey)(ku + Fz)
=kBCuvw + DEFxyz

and is that ABC = DEF.

This condition gives us a cubic equation, one root of which is

real, while the other two may be real or imaginary.
If this condition be granted we may take

Aw (Bv+ Dx) (Cw + Dx) + Dx (Aw + Ey) (ku + F) =
(a)

as the equation to the surface.

We then find Bv + Dx = 0, Cw + Dx = 0, Aw + Ey = and
Aw + Fz = as triple tangent planes to the surface.

If we take other similar arrangements for equation (a) and

substitute in turn the different roots of the cubic equation
ABC = DEF we obtain twenty-seven different forms of the equa-
tion to the surface. The tangent planes are not all different in

each case, there are forty-five in all.

The only necessary conditions that these planes should be

real are that u, v, w, x, y, z should be real, and that ABC = DEF
should have real roots.

If any one of the quantities is imaginary, since the equations
are real, we must have another quantity imaginary and conjugate
to it : therefore if any triple tangent plane, or straight line on
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the surface is imaginary, there must be another which is imagi-

nary and may be regarded as conjugate to it.

A list of the different cases is given on page 2.

The cubic surface is of the third order, for a straight line

meets it in three points ;
it is also of the twelfth class. The

class of a surface is fixed by the number of tangent planes that

can be drawn to it, which all pass through a fixed arbitrary

straight line.

The existence of nodes on the surface and their character is

examined by Dr Salmon in his Geometry of Three Dimensions

very simply as follows (Chapter XL).

Write the equation to the surface as u + u^ + u.2 + ua
=

where u
,
ult u.2 ,

u3 contain the constant term, and terms of the

first, second, and third degree respectively. If we take a certain

point on the surface as origin we may not only find u = but

i 0, all the terms in these functions disappearing.

In this case the tangent plane at the origin is indeterminate,

and a cone u.2 can be drawn every generating line of which

will meet the surface in three coincident points.

When u.2 represents a proper cone the point is called a

conic node C2 .

When u.2 represents two planes we obtain a biplanar node,

called a binode B3 , provided the planes do not intersect on the

surface. When the two planes u.2
= intersect upon the surface

the biplanar node is called B4 ,
for the class of the surface is

diminished by four. [Salmon's Geometry of Three Dimensions,

p. 489.]
The intersection of the biplanes is called an edge. When the

surface is touched along the edge by a plane we obtain a binode

Br,.
When the edge is oscular the binode is B6 .

To quote a note given by Dr Salmon : "In general, if a

surface is touched along a right line by a plane, the right line

counts twice as part of the complete intersection of the surface

by the plane, the remaining intersection being of the order n 2.

The line may, however, count three times, the remaining inter-
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section being only of the order n 3. Professor Cayley calls the

line torsal in the first case, oscular in the second. He calls it

scrolar if the surface merely contain the right line, in which case

there is ordinarily a different tangent plane, at each point of

the line."

To apply this rule to surfaces of the third degree to dis-

tinguish between the binodes B4 ,
Bg and B6 ,

we see that triple

tangent planes pass through the edge in the case of B5 or B
6 ;

in the first of these, B5 ,
it is possible to take a tangent plane so

that two of the straight lines in the section coincide, and one

straight line remains distinct from the edge ;
in the second

case, B6 ,
there is a tangent plane in which all three straight

lines of the section move up to and coincide with the edge.

When the biplanes coincide the node is said to be uniplanar ;

or more shortly a Unode; a description of these is given on

page 8.

When we wish to find how many singularities may exist on

a surface we note that any singularity reduces the class of the

surface.

For example, how many conic nodes can we have on a cubic

surface ? We find that a conic node reduces the class of a surface

by two. Four conic nodes reduce it by eight. Therefore a cubic

surface having four conic nodes is of the fourth class. If we

attempt to express the equation to a cubic surface of the second

class we find it impossible, for it no longer remains a proper
cubic surface. Dr Salmon shews how this is done in the above-

mentioned Chapter xi. The class of a surface is equal to the

degree of its reciprocal. We treat of singularities by properties

of the reciprocal surface. We say then that a cubic surface

has not more than four conic nodes.

The equations indicated in the first chapter give all possible

combinations of singularities.

C2 reduces the class of the surface by two
;

Bo by three
;

B4 by four
;
the suffix shewing the reduction.



CHAPTER I.

EQUATIONS TO CUBIC SURFACES.

IN 1849, as we read in Salmon's Geometry of Three Dimensions,
Dr Cayley mentioned to Dr Salmon the fact that there were

twenty-seven straight lines on a cubic surface.

Soon after this time Professor Schlafli investigated the pro-

perties of these lines, and papers published by him, together with

Memoirs of Dr Cayley, continue to be the standard works upon
the subject, as far as analytical methods are concerned.

Clebsch, Klein, and Zeuthen have examined the form of

different surfaces, and Reye shewed how projective Geometry
can be applied to surfaces of the third degree.

To commence then with Dr Schlafli's methods (indicated also

in Frost's Solid Geometry], we take u, v, w, x, y, z as functions of

the coordinates used, in the first degree, that is, if equated to

zero they represent planes. Then it is known that these functions

are subject to the condition A?* + Bv + Cw + Ox + Ey + Fz = where

the coefficients A, B, C, D, E, F are functions of two arbitrary

constants. JSTow if any equation of the third degree be given it

can be made coincident with

uvw + xyz (1),

subject to the added arbitrary condition that

ABC= DEF , (2).

Equation (2) gives a cubic condition between the above-mentioned

arbitrary constants, and this cubic must have at least one real

B. 1
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root, but may have three : these cases Schlafli tabulates as

(...A) and (-..B). From these equations we get the following
cases :

Case I (A), u, v, w, x, y, z real. 27 real straight lines and
45 real triple tangent planes.

Case I (B). 15 real straight lines and 15 planes.

Case II (A), y and z imaginary and conjugate. 3 real

straight lines and 13 planes.

Case II (B). 3 straight lines and 7 planes.

Case III (A), y, z, v, w imaginary, y conjugate to z, and
v to w. 7 straight lines and 5 planes.

Case III (B). 3 straight lines and 7 planes.

Besides these cases we have cubic cones and cylinders, also

zero values for u, v, w, x, y, or z, when the equation reduces to

planes and surfaces of the second degree.

Further, the values must not be coincident, otherwise we get

nodes which are considered later.

If the reality of the straight lines only, that lie on the surface,

is required, we may proceed more simply thus :

Take the equation uvw = kxyz.

There are 19 constants implied in this equation, arid by

equating coefficients we have sufficient equations, and no more,

to make this expression identical with any given equation of the

third degree. One factor on each side, as u and x, must be real,

but v, w and y, z may be imaginary and conjugate [Salmon's

Geometry of Three Dimensions, 4th ed. p. 498].

If u, v, w, x, y, z are all real factors, then we must have at

least nine real straight lines on the surface, that is to say, the

intersection of the planes u = Q, x-^ ;
u = 0, /

=
; u-0, 2=0;

&c. Denote the straight line in the planes u = and x = by

[4
Take three of the straight lines that do not intersect, as

[ux~\,

\yy\ and \wz], and take the equation of any straight line meeting

them. The constants involved in this last equation can be made
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to depend upon one variable, p suppose, for it is the generator of

a known hyperboloid.

Express the condition that any point on the line is upon
uvw = kxyz.

We find a cubic equation for p, and this must have one real

root (Case I, B), or may have three (Case I, A). Now if we
have three real roots we must have three real straight lines

meeting [ux], \yy\, and \wx\ that lie on the surface.

Similarly we have three straight lines meeting each of the

other five sets of three non-intersecting lines. Also if we have

three real roots for lines meeting the first set, we must have

real roots for the other sets. This is proved by the consideration

that we cannot have a plane section of the surface containing
two real and one imaginary straight line.

Table of Reference.

[Numbers indicate straight lines. Three numbers in a bracket

indicate three straight lines in a plane.]

(4, 6, o), (13, 10, 3), (9, 8, 7), (4, 13, 9), (6, 10, 8), (5, 3, 7),

(12, 25, 18), (24, 14, 17), (19, 16, 1), (12, 24, 19), (25, 14, 16),

(18,17,1), (2,21,22), (20, 15, 27), (23, 26, 11), (2,20,23),

(21,15,26), (22,27,11), (4,12,2), (13,14,15), (9,1,11),

(5, 14, 11), (3, 1, 2), (7, 12, 15), (6, 15, 1), (10, 11, 12), (8, 2, 14),

(4, 27, 16), (13, 23, 18), (9, 21, 24), (4, 26, 17), (13, 22, 19),

(9, 20, 25), (5, 18, 21), (3, 24, 27), (7, 16, 23), (6, 22, 25),

(10, 20, 17), (8, 26, 19), (6, 23, 24), (8, 27, 18), (10, 21, 16),

(5, 19, 20), (3, 25, 26), (7, 17, 22).

N.B. To find whether two straight lines intersect, observe

whether they occur in the same plane.

One side of every triangle intersects with one side of any
other triangle.

The table of reference is taken from a paper by Mr H. M.

Taylor [Phil. Trans. Vol. 185].

\ 2
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To connect this table with Dr Schlafli's equation we take

the lines according to the following scheme, so that 9 is the

intersection of w = and x=Q, and 15 of v=Q and 2 = 0, each

line being the intersection of the plane vertically above it with

that to the left of it.
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other sets, but nothing is yet assumed as to the intersections of

5, 16, 17; 6, 26, 27; &c.

Draw a plane through the straight lines 4 and 5. This plane
meets the straight lines 8 and 15 in points which we will call P

and Q. The straight line PQ meets the surface in four points,

for it cuts 4, 5, 8, 15. Therefore PQ lies on the surface.

Similarly if we draw planes through 4, 16, and 4, 17, we find

straight lines that meet the three non-intersectors 4, 8, 15.

Thus we have found three non-intersecting lines that lie on

the surface and meet 4, 8, 15.

But there are three, and only three, such straight lines that

lie on the surface, namely, 6, 26 and 27, therefore the three lines

found by the above construction must be the lines 6, 26 and 27.

We also see that PQ meets 5; similarly the other two lines meet

16 and 17 respectively.

We, therefore, can state that the three lines 6, 26, 27

each meet one of the lines 5, 16, 17. Since we may take any
other sets in the same way, it is evident that if we take any two

sets of three non-intersectors as 4, 14, 7 and 4, 8, 15 having a

common line, 4, then their three respective non-intersectors 5,

16, 17 and 6, 26, 27 intersect two and two as 5, 6
; 16, 27; 17, 26.

If we apply this rule to each set in turn we find all necessary

points of intersection.

We observe that there are five planes passing through the

line 4, namely, 4, 2, 12
; 4, 13, 9

; 4, 5, 6; 4, 16, 27; and

4, 17, 26.

Dr Salmon uses the following method :

Take Dr Schlafli's result so far as to assert that there are

twenty-seven straight lines on the surface, and that not more nor

less than three of these may lie in one plane.

Draw any plane u = mx through the intersection of the planes

u - and x 0, the section through this line is completed by the

intersection of u = mx with the quadric surface mvw = kyz. If

we express the condition that this section should become two

straight lines m is involved in the fifth degree, therefore there
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are five and only five sections through a straight line on the

surface in which the conic that completes the section becomes

two straight lines. Therefore the problem reduces to this :

arrange twenty-seven straight lines in sets of three, so that no

pair occurs twice in the same set, and ten points of intersection

lie on each line, while five planes and only five pass through
each line. Taking ten points of intersection for twenty-seven

lines, we count each point twice, therefore there are 135 points
of intersection.

Taking five planes about each line we count every plane
three times, once for each side, therefore there are 45 planes.

Arranging the lines according to the table of reference, we find

the arrangement complies with the required conditions, and no

change can be made without infringing them.

Another more direct method is given later when considering
"double sixes" on the surface.

If any two plane triangular sections be taken their sides

intersect two and two in one straight line. This is necessary,

for the six sides of the triangles meet the straight line that is

the intersection of the planes in six points, and these must

coincide by pairs, for a straight line can only meet the surface in

three points. It may also be proved thus : Let x = 0, y = be

two triangular plane sections of a cubic surface that do not

intersect upon the surface. The equation to the surface must be

of the form xyz = S where S is of the third degree, for the

equation to the surface does not vanish when x = and y = 0, so

that x, y are not factors on opposite sides of the equation.

When x = and when y = 0, S must resolve into three linear

factors, therefore we infer that the equation may be written

xyz = kuvw ;
the three straight lines x = 0, u =

;
x = 0, v =

;

x = 0, w = intersect the three y 0, u Q; y = 0, v =
; y = 0,

w = on the straight line x = 0, y = 0.

It is useful to note that four non-intersecting straight lines

can only be intersected by two non-intersecting straight lines,

for if we take two groups of three from these four lines, and
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through them construct two hyperboloids which are fully

determined by these lines, then these hyperboloids can only have

two other common generators which must, therefore, meet the

four given straight lines. That there are two and only two is

most easily seen by taking a plane section of both surfaces.

We find two conies meeting in four points.

Two of these points lie on two of the given straight lines,

and the others must be points on the remaining lines of inter-

section of the hyperboloids.
The two intersecting straight lines may be imaginary, or

coincident.

If we assume that when straight lines become imaginary,

they must do so by pairs, we arrive at the conclusion that the

number of real lines on the surface is 27, 15, 7, or 3.

We note that the pairs may be taken in two ways, either two

imaginary lines meeting four non-intersecting straight lines, or

in a plane section we may have two imaginary and conjugate
lines together with a real line.

The lines numbered 16 to 27 constitute a double six. None
of the even numbers nor of the odd numbers intersect one

another. One of the even numbers, as 16, intersects all- the odd

numbers except one, that is 17.

Each intersecting pair, as 16, 19, lie in the same plane with,

and complete a plane section of the surface with one of the remain-

ing 15 straight lines.

If we take 16 as an imaginary straight line, and agree that

where there is freedom of selection to keep the numbers 1 to 15

real, we find the double six 16 to 27 is imaginary. Thus

16, 19, 1 form a plane section; now 16 is imaginary, therefore

19 or 1 is imaginary and conjugate to 16. As arranged we
select 19. In the same way 21 is imaginary, being conjugate to

16 in another section. It is easy to see that 16 causes 19, 21,

23, 25, 27 to be imaginary, and these in turn cause 18, 20, 22,

24, 26 to become imaginary : 17 is imaginary as conjugate to 18

or one of the other even numbers. There is now no single
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imaginary straight line left, and, therefore, no other line to be

taken as its conjugate, unless for some other cause one of the

remaining 15 becomes imaginary.
Double sixes may be formed in 36 different ways, but no set

is independent of another. If one double six is removed we
cannot make a double six out of the remaining straight lines.

In taking one double six we take four lines that go to make
another. Suppose then two double sixes to become imaginary,
we have seven real straight lines left. Next if three double

sixes become imaginary 24 straight lines disappear and we have

but three left. Therefore we have 27, 15, 7, or 3 real straight

lines.

We next have to consider the coincidence of lines and the

singularities produced in the surface.

At an ordinary node the tangent plane is replaced by a

quadric cone [Salmon's Geometry of Three Dimensions, 4th ed.

p. 488], called by Cayley C2 .

The quadric cone may degenerate into a pair of planes inter-

secting in a straight line called an edge. If the edge is not a

line on the surface we have a binode B3 . If the edge is a line

on the surface not torsal or oscular the binode is B4 . Next in

the case of the binode B5 the surface is touched along the edge

by a plane, which however contains another straight line on the

surface not coinciding with the edge, called a transversal. The

edge is now said to be torsal. If the transversal moves up to the

edge, and coincides with it, the edge is oscular and the binode is

B6 . l) 6 ,
U 7 , U 8 are uniplanar nodes where the quadric cone

becomes a coincident plane-pair.

In U 6 the rays are three distinct lines, in U 7 two, and in u 8

all three coincide.

A straight line through a node being the coincidence of two
or more straight lines on the surface is called a ray.

In the following equations where tetrahedral coordinates are

used the equations to the faces are represented by X 0, Y = 0,

Z = W = 0.
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Where straight lines are represented by numerals they are

taken from the Table of Reference.

ONE CONIC NODE C 2 .

The equation to the surface may be written XYZ KWS,
where S = is the equation to a cone of the second degree having
its vertex at X 0, Y = 0, Z = 0, that is, S is a homogeneous

equation in X, Y, Z of the second degree and K a constant

[Salmon's Geometry of Three Dimensions, p. 488, 4th ed.J.

In Dr Schlafli's paper the kind and number of nodes on the

surface is fully discussed. Taking the notation of page 1, we
find that in a double six the lines have coincided by pairs to

form six nodal rays, passing through the node. These represent
12 lines on the surface, any pair lie in the same plane with one

of the remaining straight lines on the surface.

We derive from Dr Schlafli's cases of the reality and unreality
of lines and planes on page 1 that we may have six real nodal rays
and 15 real straight lines (Case I, A); next 12 lines may become

imaginary, eight of which are included in the nodal rays ;
in

other words, we have 4 real nodal rays, and 7 mere lines forming
three plane sections of the surface. (Case I, B.)

Case II (A) may resolve itself into 2 real nodal rays, and

3 mere lines.

Lastly, the nodal rays may become imaginary and conjugate

by pairs, we then only find 3 mere lines real.

The equation may at once be found when the lines on the

surface are given.

The position of the conic node rays is limited by the fact

that they lie on a cone of the second degree. The equations of

these lines are necessary and sufficient to determine S = upon
which they lie.

W = is a plane containing three of the mere lines that form

a triangle. The conic node rays meet the sides of this triangle
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two and two. X = 0, Y = 0, Z are the planes each containing
two rays, and a side of the triangle meeting each pair respectively.

There now remains the constant K only. This is found by

substituting in the equation the coordinates of any convenient

point on one of the remaining lines. Therefore the lines sufficient

to determine the surface are the six nodal rays, three mere lines

meeting them two and two, and one point on the surface not

upon these given lines.

Table of Reference.

The lines 16, 17; 18, 19; ... 26, 27 coincide by pairs to form

conic node rays r1} r2 ,
... r6 passing through the node, we have the

planes r^l, r3r4 2, r5 r6 3, r^i, rars 5, r4r5 6, r-^rj, r2r6 8,
-

3r5 9,

r^jlO, r4r6 ll, r2 r5 12, r.,?"4 13, i\rs \, r3r6 \5. Planes are formed

by the lines 1 to 15 as before.

ONE BINODE B 3 .

The equation S = to the cone in C2 resolves into two planes,

and we may take as equation to the surface

XYZ = KW (X + &Y + cZ) (X + b
t
y + CjZ).

Comparing with Dr Schlafli's equations (page 1) to investi-

gate the reality of the straight lines on the surface, we find (1)

all the lines may be real
; (2) both biplanes real, one containing

a real ray and two imaginary ones, and the other three real rays;

there are also three mere lines
; (3) two real biplanes, eaph

containing one real ray, and two imaginary and conjugate, and

one mere line
; (4) the two nodal planes imaginary and con-

jugate, we then have three mere lines remaining.

Counting each ray as three coincident lines we see that

(1) gives 27 lines, (2) 15 lines, (3) 7 lines, and (4) 3 lines.

A plane turning about its edge cuts the surface in a curve

with a cusp, which changes its direction to the opposite one

whenever the turning plane has passed one of the two real nodal

planes.
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Table of Reference.

Let the conic node cone degenerate into two planes, but let

the planes not intersect on the surface. Then three rays of the

conic node as r^r.^ lie in one plane and r4r5
r6 also lie in one

plane, the triangle r^l coincides with r^r.^, in other words 1

coincides with r3 . Similarly 5, 10, 3, 11, and 6 coincide with

ri> r2> r4> r5 and *V The remaining triangles formed by rays with

mere lines, and by the mere lines among themselves, are the same

as those given for the conic node.

THE BINODE B4 .

The difference between this case and B3 is that the inter-

section of the biplanes, or edge, lies on the surface. It represents

also the coincidence of two conic nodes C2 in considering the

form of the surface.

The equation to the surface may be expressed as

WXZ + (X + Z) (Y
2 - X 2 - 6Z 2

)
= 0.

The lines on the surface are the edge of 6 coincident lines,

four rays, two in each biplane of 4 coincident lines each, the

transversal in the plane touching along the edge, and four

mere lines.

(1) All these lines may be real, (2) the axis may be real, and

two rays only in one nodal plane, and the transversal, (3) the

axis and transversal only may be real, the rays being conjugate

by pairs, (4) the axis may be real and the transversal and one

plane through the transversal. In case (4) the axis counts as

4 real and 2 imaginary lines. We find then 27, 15, or 7 real

straight lines.

The above equation to the surface is quoted direct from

Dr Cayley's Memoir, as are also those for B5 ,
B6 , U 6 , U 7 and

U 8 . He implies constant multipliers, which I have inserted

for convenience in discussing some of the other equations. For

example the above equation could have been written

KWXZ + (X + Z)(Y
2 -aX2 -&Z 2

)
= 0.
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Table of Reference.

The table may be found from that of B3 by supposing two

rays as r3 and r6 to move up to and coincide with one another :

in this case 8, 4, 9, and 2 must move up to and coincide with

ri> ra> r4, and rs . It may also be found from the case of two
conic nodes, by supposing the nodes to coincide.

It is more symmetrical to take A, B, C, D the rays ;
E the

edge ; a, b, c, d the mere lines, and t the transversal. The planes
are EAD, EBC, ABc, ACd, aBD, bCD, tbc, tad, Et.

The section Et is not triangular but is supposed to consist of

two coincident lines crossed by one line
;
a diagram is given in

the chapter of sections of a cubic surface, figure 5, section H,

Chapter vi. We see also from this figure why t is called the

transversal, or line crossing the edge.

THE BINODE B,.

The equation to the surface is

WXZ + Y2Z + YX2 -Z 3 = 0.

In all previous cases, the equation to the surface can be found

when the straight lines upon it are known, but though this surface

may be found by taking the general case, and supposing lines to

move up to and coincide with one another, we cannot find its

equation in this way. This fact is noted by Cayley in his Memoir

on Cubic Surfaces, Collected Papers, Vol. vi. p. 411. We find

it by taking the case of B3 and making one of the planes osculate

along the nodal edge.

The planes are

Z = 0, X = 0, Y + Z =
0, Y - Z = 0.

The lines are

X = 0, Z =
; Y=0, Z =

;
X = 0, Y + Z =

;

X =
0, Y - Z =

;
X - W = 0, Y+Z = 0;

X + W = 0, Y - Z = 0.
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The edge is equivalent to 10 lines, the ray of the torsal plane

to 5 lines, two rays of the ordinary biplane to 5 lines each, and

there are two mere lines.

(1) All the lines may be real or (2) we may have two simple

lines imaginary and two rays in the nodal plane, equivalent

to 27 and 15 real straight lines respectively.

Dr Salmon remarks that B5 may be considered as resulting

from the union of C2 and B3 ;
he shews how the above equation

maybe obtained [Salmon's Geometry of Three Dimensions, 4th ed.

p. 489].

liable of Reference.

Denote the edge by E
;
the rays by A, B, C

;
the mere lines by

S and T
;
the planes are EA, EBC, ACS, and ABT.

THE BINODE B
fi

.

The equation to the surface is

WXZ + Y 2Z + X 3 -Z 3 = 0.

The planes are X = and Z = 0. The lines are the edge
X =

0, Z =
; equivalent to 15 lines and two nodal rays X = 0,

Y+Z=0; X =
0, Y - Z =

0, each equivalent to 6 lines. We
have two species, (1) the nodal rays may be real or (2) conjugate.

'

Table of Reference.

In the table for B g one ray moves up to and coincides with

the edge, the mere lines coincide with the rays which they

respectively intersect. The planes are E by itself, and EBC.

THE UNODE U 6 .

The biplanes in B3 may coincide, we then have

W(X + Y + Z)
2 + XYZ = 0.

The planes are

X + Y+Z = 0, X =
0, Y = 0, z = 0, W = 0.
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The lines are the intersections of the planes W = and

X + Y + Z = with X = 0, Y = 0, and Z =
respectively. We find

then three rays of 8 coincident lines, and three mere lines, which

makes a total of 27. There are two species, for Y, Z may be real

or imaginary and conjugate.

THE UNODE U 7
.

Two rays in U 6 coincide, and therefore two mere lines coincide

with the other ray.

The equation to the surface is

WX2 + XZ 2 + Ya Z = 0.

The uniplane is X 0, the plane touching along the single

ray is Z = 0. The lines are X = 0, Y = 0, the torsal ray of 16

lines
;
X = 0, Z =

0, the single ray of 1 lines
;
and Z =

0, W =
0,

the mere line.

THE UNODE U 8
.

The equation of the surface is

All the planes have coincided to one plane X = 0, and all the

27 lines to one ray X = 0, Y = 0.

It is found by making the three rays in U 6 coincide.

Two CONIC NODES C2 .

The equation to the surface may be given as

WXZ + Y2

(aZ + &W) + KS = 0,

where S is a homogeneous function of X and Y of the third

degree.

The line joining the conic nodes is torsal, it is called the

conic node axis, it is met by one mere line or transversal.

With regard to reality of lines (page 1) we have three cases

(1) all lines real, (2) two conjugate planes and two real ones

through the axis, and through the transversal one real and two
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conjugate ; (3) planes through the axis conjugate by pairs, the

transversal plane only is real. The axis represents four coinci-

dent lines, and each of the remaining conic node rays two; the

mere lines are the transversal that cuts the axis, and six lines

the intersections of biradial planes of one node with those of the

other. Two conjugate planes through the axis contain four rays
or eight lines, and two planes through the transversal, four

more; therefore in case (2) the number of real lines is diminished

by 12, leaving 15
;
the third case (3) leaves only three real lines,

for the axis counts as two real lines and two imaginary, and

there is also the transversal.

Table of Reference.

In the table for one conic node let 4. 14
; 12, 8

; 9, 15
;

and 6, 11 coincide by pairs to form rays R1} R2 ,
R

:i ,
R 4 . Then

the rays r5 r fi
will coincide to give an axis A, joining two conic

nodes, the second node being at the intersection of R 15 R 2 ,
R 3 ,

and R 4 ,
which is also the coincidence of such points of inter-

section as 4, 6; 11, 14; <fcc.

Now beside the planes given by the remaining mere lines, which

are the same as those given in the first table, we have planes
r2 r4 1 3, Rj R3 1 3, . . . formed by pairs of rays from the same node with

mere lines, two for each remaining mere line other than the

transversal
;
next we have planes Ar

t Rj ,
Ar2 R.2 . . . formed by the

axis with a pair of rays one from each node, and lastly M the

section containing the axis and transversal, which is the line 3.

Any of these planes can be determined from the original
table by noting which of the original lines are contained in each

ray.

THREE CONIC NODES 3C2 .

The equation to the surface is

Y3 + Y2

(X -f Z + W) + 4aXZW = 0.

With regard to the reality of the lines on the surface, using
Dr Schlafli's method (p. 1), we get five species : (1) all the lines
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real, (2) the three axes real and three transversals, (3) two nodes

conjugate and the nodal cone at the real node imaginary, (4) the

same as the last case except that the nodal cone is real, and

(5) a real axis joining two conjugate nodes, two rays of the

real node, and the transversal of the axis real.

Comparing the values of the lines with the table given below,
we find these cases represent 27, 15, 3, 7, and 7 lines respectively.

A real axis joining two conjugate nodes counting as 2 real and

2 imaginary lines, in case (5).

Table of Reference.

Two of the conic node rays from each node, where there are

two conic nodes, move up to and coincide with one another to

form two axes, joining the two nodes to the third node. We
may call the nodes A2A3 , AgAj, and A

X
A2 where A1? A2 ,

A3 are the

axes. There are six rays, two from each node, which we may
call R 15 T-J from A2A 3 ,

R2 ,
r2 from A

X
A3 and R 3 ,

r3 from AjA^. There

remain only three transversals 219 2 ,
t3 ,

which are mere lines,

the axes each -counting as 4 and the rays as two mere lines

respectively.

The planes are ti^ta , A^Aj, r^r3 AL ,
R.2 R3A1( r^RjAo, RS^AO,

r^ijAg, R]R 2A3 , ^Rj, 2r2 R2 ,
Z3r3 R3 , A^, A,,, and A3

?
3 .

FOUR CONIC NODES C2 .

The equation to the surface is

AYZW + BXZW + CXYW + DXYZ = 0.

The equation to the plane containing the transversals is

AX + BY + CZ + DW = 0.

We may get (1) all the nodes real, (2) two nodes real and

two conjugate, or (3) lastly four nodes conjugate two and two.

Taking the case of three conic nodes we find that rays through
the nodes have coincided by pairs to form axes joining the fourth

node to the other three
;
we therefore have six axes, the edges
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of the tetrahedron of reference, each representing four straight

lines, and the three transversals.

When two nodes are real we have one real axis and the

transversal or 7 real lines, when no nodes are real we have only
the transversals.

Klein has shewn that the form of any cubic surface may be

derived from one having four conic nodes.

Further, if we take a point on the surface, and from it draw

a tangent cone, the quartic curve projected by this cone upon
a plane reduces to two conies, their four points of intersection

being the projections of the four nodes.

The straight lines on the surface are sufficient to determine

it completely, and these in turn are fixed by the position of the

transversal plane, the axes being known. This is evident from

the equations given above, but may also be shewn geometrically.

First then to find the transversals, their plane being given.

The plane cuts the axes in six points, which may be divided into

three sets of two, taking those belonging to opposite edges

together. Join each pair of points by straight lines
;
these lines

are the transversals.

Next take any plane through one of the axes. We know
that the section of the surface on this plane is made up of the

axis and a conic section. But we clearly have five points on

this conic already known, namely the two nodes on the axis, two

points where the transversals that do not meet the axis cut the

plane, and another where the axis representing the opposite edge
of the tetrahedron cuts it.

By drawing planes through the axes we can thus find any
number of sections of the surface, for five points are sufficient to

fix the conic.

Table of Reference.

The planes are now reduced to the four faces of the tetra-

hedron made by the nodes, a triangle made by transversals, and
six planes of the form At, in which lie an axis with the trans-

versal that meets it.

B. 2
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[In any plane section parallel to the plane of the transversals

not only the asymptotes, but also the tangents at the points in

which the axes meet it are parallel to the transversals, each tangent
to the transversal corresponding to the axis. Six points with their

tangents, and the directions of the asymptotes, are sufficient to

determine the section.]

Two BIXODES B3 .

The equation to the surface is WXZ + KS = where S is a

homogeneous function of X and Y of the third degree.

The singular osculating plane and one at least of the other

planes through the axis must be real, but W, 2 may be imagi-

nary and conjugate, so also may two of the three factors of

S. From this double reason of partition we get four species

[Dr Schlafli].

If the three factors of S are aX Y, &X -
Y, cX -

Y, the lines

on the surface with their equations are X =
0, Y = 0, an axis of

9 lines
;
and X - Y = 0, 6X - Y = 0, cX - Y = taken in turn with

Z and W = 0, these represent 6 rays of 3 lines each. The

reality of the axis and two rays implies 15 real lines.

Table of Reference.

In the case of two conic nodes we have to suppose a double

change, first the conic node rays which may be regarded each as

two mere lines take up one mere line to become a binode ray,

the axis takes up two more mere lines, and then one of the rays

coincides with the axis. These changes give the system. We
have the axis A, three binode rays 6j, b2 ,

b3 ,
and three B1? B.2 ,

B3 .

The planes are b^b^, Ab
l
B

1 ,
A62 B2 ,

A&3 B3 , BjB-jBj, and a plane

containing the axis A only.

THREE BINODES B
3 .

The equation to this surface is WXZ + Y3 = 0.

We have three axes of 9 lines each joining the three nodes

which are angular points of the tetrahedron. A model of this
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surface in the South Kensington Museum will be described in a

later chapter. We have two species, for X, Z may be real, or

imaginary and conjugate.

There is no reason to quote the table of reference, for all

the triangular sections have coincided with the biplanes. The

planes are reduced to four, namely the common biplane Y = 0,

and the planes one for each binode X =
0, W =

0, Z 0.

THE BINODE B
3 + THE CONIC NODE C2 .

The equation to the surface is

WXZ + KY2 Z + TO (aX -
Y) (bX

-
Y) (cX

-
Y) = 0.

There are two species representing respectively 27 and 15

real lines, the first when all the lines are real, and the second

when the axis, two rays of the binode, one of the conic node, and

one mere line are real.

Table of Reference.

In the table for B3 let two rays rx and rz unite to form an

axis A of 6 lines, we will call r3 the binode ray B, and rt ,
r5 ,

re

binode rays blt b2) b3 . Of the nine mere lines six unite by pairs

to form conic node rays cn c2 ,
c3 . There still remain three mere

lines 11} 1.
2 ,
and 13 .

The planes are b^by, AB, A6
1
c
J ,

A&2 c2 ,
A63 c3 , B^6 1?

Bl.2b2 ,

o(s o3 , CgCgti, 3^1 '2? ^1^2 's-

THE BINODE B4 + THE CONIC NODE ex.

The equation to the surface is

WXZ + (X + Z)(Y
2 -X 2

)
= 0.

We cannot find the equation of the surface from any consi-

deration of the position of the lines by geometrical reasoning. We
eed not therefore quote the table of reference. The equations
the straight lines on the surface are X = 0, Y 0, the axis

trough the nodes counting as 8 lines
;
X 0, Z =

0, the edge of

the binode being a transversal, and counting as 6 lines
;
X Y = 0,

22
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Z =
0, and X + Y = 0, Z - 0, two biplanar rays of four lines each

in the non-axial biplane ;
X - Y = 0, W = and X + Y = 0, W = 0,

two conic node rays of 2 lines each
;
and lastly X + Z =

0, W = 0,

a mere line.

Dr Schlafli gives the equation as

WXZ + (X + Z) (Y
2 - X 2

)
= 0,

and hence deduces two species according to whether a is positive

or negative. For if a is negative the factors of Y X 2 are

imaginary and conjugate. It is clear in this case that the binode

and conic node rays become imaginary ;
this accounts for 1 2 lines

and leaves us with 15 real lines.

THE BINODE B5 + THE CONIC NODE C2 .

The equation to the surface is

WXZ + Y 2Z + YX- = 0.

sThe planes are Z = 0, X = 0, Y = 0, and the lines are X = 0,

Y = 0, an axis of 10 lines; X = 0, Z =
0, an edge of 10 lines;

Z 0, Y 0, a biplanar ray in the torsal plane of 5 lines
;
W = 0,

Y = 0, a conic node ray of 2 lines.

There is but one species.

THE BINODE B6 + THE CONIC NODE C.2 .

The equation to the surface is

WXZ + Y SZ + X3 =0.

Z is an oscular biplane ;
X = is an ordinary biplane ;

and the lines are X =
0, Y-0, an axis of 12 lines; and X=0,

Z =0, an edge of 15 lines.

There is but one species.

THE BINODE B3 + Two CONIC NODES C2 .

The equation to the surface is WXZ + Y2

(X + Y + Z) = 0. The
lines are two axes X = 0, Y = 0, and Z = 0, Y = of 6 lines each

;

an axis joining the conic nodes Y = 0, W =
0, of 4 lines

;
X =

0,
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Y + Z = and Z 0, Y + X = 0, biplanar rays one in each biplane,

being each a transversal of 3 lines
;
W = Y = - Z, and W = Y = - X,

two conic node rays one through each node of 2 lines
;
and lastly

the transversal W-0, X + Y + Z = 0. We have two species, for

X, Z may be imaginary and conjugate. In the second case the

axis and the transversal are real, that is two real lines in the

axis, two being imaginary, and one mere line = 3.

Two BINODES B
3 + ONE CONIC NODE C2 .

The equation to the surface is

WXZ + XY2 + Y3 =0.

The lines on the surface are an axis joining the two binodes

X = 0, Y = of 9 lines
;
two axes joining the binode to the conic

nodes of 6 lines Y = 0, Z = 0, and Y =
0, W =

;
two biplanar rays

one for each binode Z = 0, X + Y = 0, and W = 0, X + Y = of 3

lines each.

We have three species, (1) all the lines real, (2) W and Z may
be imaginary and conjugate, then the two biplanes are conjugate,

the cone at the node is imaginary, but the point real, (3) W
and Z may be imaginary and conjugate, then the two biplanes
are conjugate and the node real.

ONE BINODE B4 + Two CONIC NODES C2 .

The equation to the surface is

WXZ + Y2

(X + Z) = 0.

The lines on the surface are two axes each of 8 lines Y = 0,

X 0, and Y = 0, Z =
;
one axis of 4 lines the conic nodes

Y =
0, W =

;
the edge of the binode of 6 lines X = 0, Z =

;
and

W = 0, X + Z-Oa mere line. We have two species, for X and Z

may be real or imaginary and conjugate.

Dr Schlafli gives a geometrical construction for the surface in

the second case. Let a variable circle move having its diameter

parallel to the axis of a fixed parabola, and intercepted between

the curve and its tangent at the vertex, while the plane of the



22 EQUATIONS TO CUBIC SURFACES [CH.

circle is perpendicular to that of the parabola, the circle generates
the surface.

Cases numbered XXII and XXIII are scrolls having an

infinite number of straight lines upon them. Dr Salmon gives
a description of them in his Geometry of Three Dimensions.

It is not necessary to do more than give their equations,

namely, X 2W + Y2Z = and X (XW + Y2) + Y3 = 0.

Provided the equation does not resolve itself into factors so

as to give three planes, or a plane together with a surface of the

second degree, these twenty-three equations, together with the

equations to cubic cones and cylinders, give all possible cases of

equations to cubic surfaces.

Zeuthen has invented a very interesting method of finding
the form of a cubic surface.

Take a point O upon the surface, but not upon one of the

straight lines, call this point the " centre of projection."

Take also a fixed plane parallel to the tangent plane at O,

as M
plane of projection." Draw a straight line from O to meet

the surface in P and Q, and the plane of projection in M. Let

P be nearer to O than Q. When P and Q are both real points P

traces out a sheet of the surface which we call the visible sheet,

while that traced out by Q is invisible.

When P and Q are coincident M traces out a quartic curve.

If M be taken within the four closed curves of the quartic
P and Q are both imaginary. One or more of these closed curves

may be represented by infinite branches.

It may be stated then that the projection of any cubic surface

from a point O upon it, on a plane of projection parallel to the

tangent plane at O, is a quartic curve. [See an article by
Zeuthen, Math. Annalen, Vol. vm. p. 1.]

The projections of twenty-four of the twenty-seven straight

lines are double tangents to the four closed curves of the quartic,

each touching two of the four.

If a straight line may be considered during part of its length

as traced out by P on the visible sheet, when its projection
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touches the quartic, the part produced must be taken as the

locus of Q, that is, it becomes invisible.

It may be concluded that there are four openings or holes on

every cubic surface having twenty-seven real straight lines, and

that twenty-four of these lines pass each through two openings.

A double six passes through each opening, and a double six

between each opening and the next.

The surface can be deformed still keeping the same general

outlines to one having four conic nodes, the quartic correspond-

ing to this second surface having four nodes must reduce to two

conies intersecting in four real points, and the twenty-four

straight lines on the surface coincide by fours to form six conic

node rays, which project into the six straight lines joining the

intersections of the conies by pairs.

Now to apply this more conveniently Zeuthen proceeds as

follows. Take the point O at a point where the curvature is

elliptic, and take the tangents of the first kind, that is the four

double tangents to the quartic each touching the same oval

twice, as imaginary. Replace the ovals for convenience by

circles, then the twenty-four double tangents each touching two

ovals are represented by the twenty-four double tangents to the

circles.

A double six touches each circle. If therefore one oval

becomes imaginary a double six disappears. Similarly if two

ovals become imaginary another double six, partly involved with

the first, also disappears. When the third oval is imaginary it is

clear that all twenty-four of the tangents have disappeared, so

that as far as the lines are concerned we need not consider the

fourth oval, but this does not prevent the fourth oval from

existing as a contour of the surface.

Some very good figures and sketches of surfaces having one

conic node, symmetrical in form, described by Klein, will be

found on the last few pages of Math. Annalen, Vol. vi., 1873.

In 1894 lectures were given by Klein in America which were

reported in the Evanston Colloquium. In one of these lectures
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(p. 27), after reference to the cubic curves discovered by Sir

Isaac Newton, Klein mentions the methods, just described, by
which Zeuthen derives the shape of cubic surfaces from quartic
curves.

Next he proceeds to describe how he first came to construct

the models of cubic surfaces exhibited by him at the World's Fair

in Chicago.
He tells his audience that he was encouraged to make this

series of models by one constructed by Clebsch in 1872.

This particular model was symmetrical, and was that of a

cubic surface having twenty-seven real straight lines. It was

known as the diagonal surface.

Dr Salmon in his Geometry of Three Dimensions states that

one of the most useful equations for investigating the properties
of cubic surfaces is

aa? + by
3 + cz3 + dv* + ew3

0,

where x, y, z, v, w involve the current coordinates in the first

degree, and their sum is identically zero. He shews that the

equation is perfectly general if there is no multiple point, for

the number of independent constants involved is nineteen.

[Geometry of Three Dimensions, 4th ed. p. 491.]

Now suppose a, b, c, d, e to become equal, we then have

Clebsch's diagonal surface. We may put a, b, c, d, e each equal

to unity. The reason that it is called the diagonal surface is

this: Suppose we take any one of the planes x = 0, the other

four planes cut it in a quadrilateral figure. The three diagonals

of this quadrilateral are straight lines on the surface.

In this way we get 15 straight lines on the surface, three in

each of the five planes. That this is the case is evident from

the equations, for if we take x = 0, employing the condition

x + y + z + v + w = Q,

we find that ar
t +

2/

3 + a3 + v3 + ?#3 =

reduces to 3 (y + z) (z + v) (y + v)
=

0,

which with x represents the above-mentioned diagonals.
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It is clear that if we have nine straight lines, so related that

if written as a determinant with three rows and three columns,

every line intersects every line in the same row and every line

in the same column, then a family of cubic surfaces can be

described that pass through these nine lines
;
for we may take

the equation to the surface as xyz = Kuvto where K is indetermi-

nate. See page 4.

Now K may be fixed by assuming any point we like, not on

the nine straight lines, nor in a plane with any three that

intersect, to be on the surface.

When K is known we find 18 sti'aight lines, 12 of which

may be imaginary, that lie on the surface.

But we may have already selected the point so as to lie on

one of these lines, and it is easy to see that we may do so, for

every value of K must give at least one straight line on the

surface
; conversely if we take the arbitrary point as on this

straight line, we obtain but one value of K, which must be the

same as before.

Thus we arrive at the conclusion that the equation to the

surface is fully determined by nine straight lines arranged as

above that lie on the surface, and a tenth straight line on the

surface, that meets three non-intersecting lines of the nine.

Further, this tenth straight line may be fixed by assuming that

it meets one of the straight lines already known, at an arbitrary

point : for example, if we take a point on 4 as that at which 16

meets it, then 16 is fixed, for only one straight line can be drawn

through this point to meet 14 and 7. It is found by drawing a

plane through the fixed point and 14 to meet 7 in a second

point. Joining the fixed point to this second point we get but

one position for 16.

Sturm commences his text-book on cubic surfaces by taking
such a system of lines.

We ensure the reality of 15 straight lines on the surface,

and these are sufficient to determine it completely, but 7 or 3 are

not sufficient.
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To secure 27 real straight lines it is best to place a double

six in position, for example 16 to 27; the other 15 straight

lines must be real.

For example, 1 is the intersection of the planes containing

19, 16 and 17, 18 which are real planes completely fixed in

position, for each contains two known straight lines. By using
the table of reference we can pick out pairs of planes for all the

lines from 1 to 15.

To place a double six in position we may take any five

non-intersecting straight lines provided they all meet the same

straight line. Take 16, 18, 20, 22, 24 that all meet 27. Now
we know that two straight lines can always be drawn to meet

four non-intersecting straight lines
; they may be imaginary, but

if one is real the other must be so. We have given that 27

meets 16, 18, 20, 22. There is but one other straight line that

meets them, and this we number 25. Selecting sets of four in

this way from the five straight lines we get 17, 19, 21, 23. Now
26 meets these four lines, so that the double six is completely
determined.

Also from analytical considerations these five lines 16, 18,

20, 22, 24 meeting 27 are sufficient to give the cubic surface,

for the five straight lines limited by the above condition give

nineteen equations to find nineteen constants.

Having found the numbers 16 to 27 we proceed as shewn

above to find the lines numbered 1 to 15 as intersections of pairs

of real planes.

If we bear in mind that any plane triangular section must

meet any other one so that one side of one meets one side of

another, and no two sides of one section meet one of another,

also that two planes meet in one straight line, we can easily

verify the table of reference.

For example, as above-mentioned, 1, 19, 16 and 1, 17, 18 are

planes, so also are 3, 24, 27 and 3, 25, 26.

Now we know that 19, 24
; 16, 27; and 17, 26; 18, 25 are

respectively pairs of intersections, therefore 1 meets 3.
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Before proceeding to describe Reye's geometrical methods it

may be interesting to examine their analytical meaning.
Let X] = 0, Yj 0, Zj = be the equations to three planes

passing through the point S,, and let X2
=

0, Y2
=

0, Z 2
= 0;

X3
=

0, Y3
=

0, Z 3
= be the equations to planes passing respec-

tively through S2 and S 3 .

We define LX
:
+ MYj + NZ! =

LX.2 + MY2 + NZ 2
=

LX 3 + MY3 -(- NZ
:$

=

as corresponding planes drawn from centres Sn S 2 ,
S3

. Elimina-

ting L, M, N we find that the equation

X, Y, Z, =

X., Y2 Z 2

X
a Y3 Z 3

represents a cubic surface.

Corresponding rays from S1; S2 ,
S3 are the intersection of

corresponding planes.

We may state then that

Xi = WY! = nZ 1 and lX 2
= ?>iY2

= nZ 2

are corresponding rays of the centres S
x
and S 2 . Corresponding

rays do not generally intersect, but when corresponding rays
from two pencils intersect their points of intersection lie on a

twisted cubic.

For we find Xj : X2 : : Y
t

: Y2 : : Z
l : Z 2 so that a point of inter-

section of corresponding rays lies upon both conicoids XjY2
= X 2Y I

and Z!Y2
= y

l
Z 2 . Again the intersection of two such correspond-

ing rays lies upon the cubic surface independently of the third

centre S3 ,
for it causes two rows of the determinant representing

the equation to the surface to become proportional. Therefore

we see that every point on a certain twisted cubic, which we
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may call the twisted cubic SjSa, lies upon the cubic surface

independently of the third centre S3 .

We note that if we take a fourth set of planes,

Xj + ?nX 2
=

0, Yj + ?nY2
= 0, Z

x + mZ 2
=

passing through a point S4 on the surface, then corresponding

planes from S4 may be used in place of those from S^ S 2 ,
or S3

to generate the surface, because we may add to any row of a

determinant the multiple of any other row.

Any secant or straight line cutting the twisted cubic SjSo

twice is the intersection of two corresponding planes from the

centres S
x
and S2 . Therefore there is one plane of S3 that cor-

responds to each secant, because it corresponds to both planes
that by their intersection give the secant. Also one secant and

only one can be drawn from any arbitrary point. It is clear then

that the surface may be generated by the intersection of secants

of SjSo with corresponding planes from S3 .

Each secant therefore meets the surface three times, twice

on the twisted cubic and once where the corresponding plane

from S3 meets it. The points at which any secant drawn from

an arbitrary point meets the cubic may be real, coincident, or

imaginary.
We may next proceed to shew that the surface may be

generated by any three centres S 1} S 2 ,
S3 on the surface, not in

one straight line. In the first place it is proved that any twisted

cubic may be generated by pencils (or sets of corresponding rays)

from any two centres upon it, the secants still remaining as

intersections of corresponding planes.

We then take S 4 any point on the twisted cubic SjS,, and

shew that any point on the twisted cubic S4 S3 is on the surface.

It is assumed that S4 S3 can by moving S4 along SjS 2 be made
to pass through any point on the surface, in the same way that

we can make any straight line through the vertex A of a triangle

pass through any point P in the plane, by so selecting a point
D in the base that ADP is a straight line.
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It should here be stated that Reye establishes a complete

correspondence between twisted cubics on the surface, and

straight lines in a plane.

We see then that the surface may be generated by centres

at any three points upon its surface not in one straight line.

For we have shewn that the surface may be generated by the

secants of a twisted cubic and corresponding planes from another

centre, and that we can so alter the position of this twisted

cubic as to make it pass through any point on the surface :

further, the twisted cubic may be generated by any two centres

upon it. It is evident then that by successive changes we may
take any three selected centres.

It will be observed that we get another set of twisted cubics

by taking

X
x

: Yj : : X 2 : Yo : : X 3 : Y3 .

The propositions which can be now established are evident

from analytical considerations.

I. If four points lie in one straight line, that line lies

entirely on the surface.

II. ]f a plane passes through a straight line on the surface

the section is completed by a conic and vice versd.

III. A plane section may degenerate into three straight

lines.

IV. Two twisted cubics as SjSg, S^ have two and only
two common secants not passing through S1? that is the secants

through Sj not being included, unless the cubic surface degene-
rates into a plane and surface of the second degree. From this

proposition we find the twenty-seven straight lines on the

surface.

Many properties of plane cubic curves are derived from con-

sidering a curve as generated by a pencil of lines and a pencil of

conies.
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The method used may be illustrated as follows :

Take the equation of a cubic curve as

uvw = kxyz

where u, v, w, x, y, z equated to zero represent straight lines in

the plane.

If we consider muv kxy as a pencil of conies, any given
value of in fixing one of the system, a pencil of conies being a

series described through four given points ;
and take w - mz as a

corresponding pencil of straight lines drawn through w 0, z = 0.

Then to each conic corresponds a straight line, and each conic by
its intersection with its corresponding straight line generates the

curve uvw = kxyz.



CHAPTER II.

PROJECTIVE PENCILS.

ON THE CONSTRUCTION OP CUBIC SURFACES BY

GEOMETRICAL METHODS.

A cubic surface is the locus of the intersection of three corre-

sponding planes of three projective pencils, the centres of ivhich are

not in one straight line. [Reye.]

We have first to explain what is meant by projective pencils,

and though the subject is fully discussed under the heading

Geometry in the Encyclopedia Britannica, Vol. x., it will not be

out of place here to give a brief description of Reye's methods.

First, then, take any number of points A, B, C, D, E, in a

straight line and two points S and S' in the same plane with it.

Join SA, SB, SC, ... and S'A, S'B, S'C, .... Then we have two

plane perspective pencils of lines or rays drawn from S and S'.

Turn one of these pencils through any angle, so that S'A, S'B,

S'C, ... take up a new position as S'A', S'B', S'C', .... Then SA,

SB, SC, ... and S'A', S'B', S'C', ... are not now perspective but

projective pencils.

We observe that three rays in one pencil being made to

correspond to three of another, the correspondence is uniquely
determined.

For if SA, SB, SC, be given, and S'A', S'B', S'C', and any other

ray be taken as SD, then if we take the ray S'D' so that the
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anharmonic range [ABCD] =
[A'B'C'D'], we know that the ray S'D'

is uniquely determined, and similarly for any other ray.

It can easily be shewn in the same way by use of the principle

of anharmonic ratio as given in most text-books on conic sections,

that if two pencils are perspective or projective to a third, they
are projective to one another.

It may also be assumed [Geometrical Conies, by Taylor, or

Smith] that if we take four points K, L, M, N, and find that the

anharmonic range S [KLMN] = S' [KLMN], then the six points S,

S', K, L, M, N are on the same conic. This theorem may be used

to prove that the corresponding rays of two projective pencils

intersect on a conic.

For suppose corresponding rays of two projective pencils to

intersect at K, L, M, their poles being S and S'. Describe a conic

through K, L, M, S, S', and let a ray from S meet the conic in N.

Join S'N. Then since K, L, M, N, S, S', are on the same conic,

we find the anharmonic ratio S [KLMN] S' [KLMN], but as stated

above this is a necessary and sufficient condition that the rays

SN, S'N should correspond. In the same way we may proceed
with any other ray, and as the correspondence is unique, and SN
can meet the conic at no other point, there is no other solution

of the theorem.

Next to consider axial pencils. Take two straight lines SP
and S'P', and through them draw planes to meet another given

plane, if we suppose P and P' for convenience to be in this given

plane, and in it take any straight line having points A. B, C, D, ...

upon it, then to each point A, B, C, D, ... correspond two planes

SPA, S'P'A; SPB, S'P'B
;

tfcc Also to each pair of rays PA, P'A
;

PB, P'B, correspond pairs of planes, passing through the axes SP

and S'P'. If therefore in a plane we take two perspective pencils

PA, PB, PC, ...
, P'A, P'B, P'C, ...

,
and take any two points S and

S' not in the plane, and through SP and S'P' called axes, we draw

sets of planes to contain PA, PB, PC, ...
,
and P'A, P'B, P'C, ...

,
we

get two axial pencils of planes.

Now any straight line drawn to meet two axial pencils that
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are perspective to one straight line is divided by their planes into

two sets of points that are projective, for by using successive

anharmonic ratios we may shew that each set of points is

projective to the range A, B, C, D, ....

If one of these axial pencils is turned through any angle, it

is clear that its anharmonic properties remain the same.

Therefore we may state that two axial pencils are projective
if any plane section of one is projective to any plane section of

the other.

Corresponding planes of two projective axial pencils not being

perspective intersect in straight lines that generate a conicoid.

This is evident from the fact that two plane projective pencils

generate a conic. For two projective axial pencils are cut by a

plane in two plane projective pencils, and corresponding rays of

these plane pencils meet on a conic, and these corresponding rays

lie in corresponding axial planes, so that the intersection of

corresponding planes generates a conic in this plane section.

This being true for every plane section, it is clear that a

conicoid is generated by the intersection of corresponding planes
of two projective axial pencils.

We now come to projective pencils in space of three dimen-

sions.

Take any two points S and S' not in a given plane, and in

this plane take any number of points A, B, C, D, . . . . Join SA r

SB, SC, SD, ...
,
and S'A, S'B, S'C, S'D, .... We call these two

perspective systems of rays, where SA, S'A
; SB, S'B

; SC, S'C
;

SD, S'D, are said respectively to correspond. Two planes that

contain corresponding rays as SAB, S'AB are said to correspond.
Now let the pencil of rays centre S' be turned into any other

position, the rays still keeping the same position with regard to

each other, then the rays S'A, S'B, S'C, S'D, ...
,
take up some new

position as S'A', S'B', S'C', S'D'. The pencils SA, SB, SC,

SD, ...
, S'A', S'B', S'C', S'D', ...

,
are projective pencils, where SA,

SB, SC, SD, ...
,
are rays corresponding to S'A', S'B', S'C', S'D', ....

As in perspective pencils corresponding planes contain correspond-

B.
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ing rays, and two corresponding planes of one pencil intersect

in a ray, that corresponds to the intersection of the two corre-

sponding planes of the second pencil.

Pencils that are perspective to the same pencil are perspective
or projective to one another.

These pencils may be supposed to be built up or composed of

axial pencils. For take a plane containing points A, B, C, D, ...
,

and two centres S and S' not in the plane, and take also two

corresponding rays SP and S'P, then if we take any number of

planes SPA, SPB, SPC, ...
,
these will correspond to S'PA, S'PB,

S'PC, ...
,
in two axial pencils, the axes being SP arid S'P.

In this case the pencils are perspective, but if one of them be

turned through any angle, its projective properties remain the

same, and the two pencils are so constructed that to every axial

pencil in one corresponds an axial pencil in the other.

Corresponding rays of two projective pencils do not genera////

intersect, but when they do the locus of their points of intersection

lies on a twisted cubic.

Let SS' correspond to SA when considered a ray of the pencil

centre S' and to S'B' when considered a ray of the other pencil.

Then SA and SS' may be taken as the axes of two projective

axial pencils which, as we have shewn, generate a conicoid, and

since the axes intersect this conicoid must be a cone, for every

generator passes through S. Similarly a cone is generated by the

axial pencils SS' and S'B', where SS' is now taken as a ray of the

first pencil. At every point at which these cones meet it will be

found that corresponding rays of the pencils intersect at centres

S and S', for corresponding planes meet in corresponding rays.

When the cones have a common plane section, they intersect

in a conic section, the twisted cubic in this case being made up of

the conic and the straight line SS'. The conic cuts SS', but is

not in the same plane with it.

The correspondence of two pencils is uniquely determined when

four rays or four planes of one correspond to four rays or four

planes of the other.
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The proof of this proposition follows from the fact shewn

above that two projective plane pencils are determined by three

rays of each. For take four rays SA, SB, SC, SD, to correspond
to four rays S'A', S'B', S'C', S'D'. Take two axial pencils having

SA, S'A' as axes meeting any given plane in A and A'. Then the

plane pencils AB, AC, AD, and A'B', A'C', A'D', are determined as

projective to one another by three rays of each. Next taking
axial pencils with axes SB and S'B' we can find any point of the

first pencil corresponding to any given point of the second in the

given plane. For example, take Q any point in the given plane
as lying on a ray SQ of the first pencil. Join AQ, BQ, then by
taking axial pencils as shewn above with axes SA, S'A'; SB, S'B',

respectively, we find the pencils AB, AC, AD, AQ, and BA, BC. BD,

BQ, and construct the corresponding pencils A'B', A'C', A'D', A'Q',

and B'A', B'C', B'D', B'Q'. Then A'Q' and B'Q' intersect in Q',

which is thus uniquely determined, and the ray S'Q' will corre-

spond with SQ.

It is clear that four planes equally determine correspondence,
for corresponding planes intersect in corresponding rays.

If three points A, B, C, on a straight line correspond to them-

selves, then two ranges of points become perspective in this line.

For if we have two anharmonic ranges on the same line, A, B, C, D,

and A, B, C', D', so that [ABCD] =
[ABC'D'J, and if C' moves up to

C, D' moves up to D, and as this is true for every position of D,

the ranges become perspective.

Before proceeding to consider cubic surfaces it is necessary to

prove a few of the properties of twisted cubics, namely :

(i)
A twisted cubic may be generated by two projective

pencils, the centres of which are at any two points upon it.

(ii) Only one secant can be drawn to a twisted cubic from

any point not upon the curve to meet it at two points which may
be real, coincident, or imaginary.

(iii) Every secant is the intersection of two corresponding

planes of the pencils.

32
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If
j
and a2 be two corresponding rays in the pencils S and

S', then the corresponding planes in the axial pencils having j

and 2 as axes generate a ruled quadric surface. If P be any

point on the cubic, and i\ and pz be the corresponding rays in S

and S' which meet in P, then to the plane a^ p1
in S corresponds

2 pz in S' ; these therefore meet in a line through P. This may
be stated thus : those secants of a cubic which cut a ray % drawn

through the centre S of a pencil form a ruled quadric surface

which passes through both centres and which contains the twisted

cubic. Of such surfaces an infinite number exists. Every ray

through S or S' which is not a secant determines one of them.

If however the rays j
and 2 are secants meeting at A, then the

ruled surface becomes a cone of the second order having A as

centre. All secants which pass through a point on the twisted

cubic form a cone of the second order, and the projection of a

twisted cubic from any point on the curve to any plane is a conic.

If
j
is not a secant, but made to pass through any point Q in

space, the ruled quadric surface determined by j
will pass

through Q. There will therefore be one secant and only one

passing through Q, for if two such lines pass through Q then the

lines SQ and S'Q will be corresponding lines, hence Q will be a

point on the cubic, and an infinite number of secants will pass

through it. Hence through any point in space one and only one

secant to the cubic can be drawn.

The fact that all the secants through a point on the cubic

form a quadric cone shews that the centres of the projective

pencils generating the cubic are not distinguished from any other

points on the cubic.

If we take two points S and S' on the cubic and draw the

secants through each of them we obtain two quadric cones which

have the line SS' in common, and which intersect besides along
the cubic. If we make these two pencils having S and S' as

centres projective by taking four rays on one cone as corresponding
to the four rays on the other which meet the first on the cubic,

the correspondence is determined. These two pencils will generate
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a cubic, and the two cones of secants having S and S' as centres

will be identical with the above cones, for each has five rays in

common with the first, namely, the line SS' and the four lines

determined for the correspondence, therefore these two cones

intersect in the original cubic. Therefore on a twisted cubic any
two points may be taken as centres of projective pencils which

generate the cubic, corresponding planes being those which meet

on the same secant. Of the two projective pencils at S and S' we

may keep the first fixed and move the centre of the other along-

the curve. The pencils will hereby remain projective, and a

plane M in S will be cut by its corresponding plane M' always in

the same secant a
;
while S' moves along the curve the plane M'

will turn about a describing an axial pencil.

We note that a twisted cubic is a curve of the third order, for

a plane cuts the two quadric cones which generate it in two
conies which intersect in four points, and one of these is on the

line SS' joining the centres of the pencils, while the other three

are on the twisted cubic.

Now suppose we take three pencils having centres S, S', S",

that are projective, then we take as definition of a cubic surface,

that it is the locus of the intersection of three corresponding

planes of these pencils. It will be found necessary to make
certain limitations to obtain a true cubic surface, beside the one

already given, that the centres of the pencils are not in one

straight line. For example, if the three pencils are perspective

two and two, the surface obviously degenerates into three planes,

and if two pencils are perspective we get a plane and a quadric
surface.

It has already been shewn that the corresponding rays of two

pencils that intersect meet on a twisted cubic. Let P be any

point on the twisted cubic generated by S and S'. Join S"P, and

at S take SQ to correspond to S"P at S", and S'Q' to correspond
to the same ray S"P, at the centre S'. Take S"M at S" to corre-

spond to the ray SP at S, then we know it will also correspond to

S'P at S'. By definition corresponding planes are those containing

83738
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corresponding pairs of rays, therefore QSP, Q'S'P, PS"M are three

corresponding planes of the pencils S, S', S", and they meet at

P, therefore P is a point on the surface. We may state then that

the twisted cubic generated by the pencils S and S' lies on the

cubic surface independent of the position of S". Similarly the

twisted cubics joining the centres S' and S" and generated by the

pencils having centres at S' and S" lie on the surface. Now it

has been shewn that the secants of the twisted cubic joining S

and S' are the intersections of corresponding planes of the pencils at

S and S', therefore the point at which the corresponding plane at S"

meets a secant a, which is the intersection of the corresponding

planes at S and S', is the intersection of three corresponding

planes at S, S', and S", and lies on the surface. Therefore this

secant cuts the surface three times, namely, the two points at

which it cuts the twisted cubic, and again where the corresponding

plane from S" meets it. The first pair of points may be imaginary.
We note that it has been proved that the twisted cubic may be

generated by two projective pencils at any two points S and S'

upon it.

Now take the three twisted cubics SS', S'S", and S"S, and

upon one of these, S'S", take a point X. [It will be convenient

to take as figure a plane triangle SS'S", and mark a point X upon
its base.] Now take any point P upon the twisted cubic joining

S and X generated by two projective pencils at S and X, the

pencil at X being projective to those at S' and S", and therefore

to S. P will lie upon the surface, for just as in the last proposition

we can shew that it is the intersection of three corresponding

planes from X, S, and S', and also from X, S, and S", and therefore

of three corresponding planes from S, S', and S", the original

pencils, therefore the point P lies on the surface.

By moving X along the twisted cubic S'S", we can make the

twisted cubic XS pass through any point P on the surface.

We find then that the surface may be generated by projective

pencils at any three points upon the surface not in one straight

line. It follows that no straight line generally can meet the
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surface at more than three points, for taking a straight line that

meets the surface in P and Q, then PQ is a secant of a twisted

cubic passing through P and Q. If the surface be generated by
pencils at P and Q and any other point S on the surface, PQ can

only meet the surface again where the corresponding plane from

S meets it.

We say no straight line can generally meet the surface at

more than three points, for suppose the three corresponding

planes do not meet at a point, but in the same straight line, then

every point of this straight line is on the surface.

It is clear also that if any straight line contains four points
on the surface it lies entirely on the surface, for take the points
P and Q as above as secant of a twisted cubic, through P and Q,

let S be another point on the surface, and let the surface be

generated by pencils having centres at P, Q, and S. Now there

is but one plane at the centre S corresponding to the secant PQ,
that is to the corresponding planes that determine the secant PQ.

If therefore this plane meets the line PQ in two points it must

contain it altogether, and therefore the line PQ lies entirely on

the surface.

Next let SPQ be a straight line on the surface, and let the

surface be generated by pencils at S, S', and S", where S' and S"

lie in a plane through PQ but not upon PQ, S' and S" being upon
the surface.

Now it is clear that the plane SS'S" corresponds to itself in

the pencils at S' and S", for corresponding planes from S' and S"

meet in PQ. Therefore we have a number of rays of the pencil

S' being the intersections of other planes of the pencil S', that

all lie in the plane S'PQ, and correspond to rays that are the

intersections of corresponding planes of the pencil S", and also

lie in the plane S'PQ
;
that is to say we have two plane projective

pencils in the plane S'S"PQ, and the intersections of the corre-

sponding rays of these pencils lie on the surface. But it is known
that these pencils generate a conic. Therefore the plane section

through any straight line is made up of this straight line and

a conic section.
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We next proceed to shew that a cubic surface can be described

through any double six and is determined by it.

Take a double six U, V, W, X, Y, Z, arid
, v, w, x, y, z, where

any one of the first group as U meets any five of the second group
as v, w, x, y, z, but does not meet any of the remaining lines.

Take three points S, S', S", as centres of pencils that generate
the surface, and select them so that they lie on the lines x, y, z

respectively, but not at points of intersection with other lines of

the system. Let the projectivity of the pencils be determined

by the lines W, X, Y, Z, that is to say let the planes WS, WS', WS"

correspond, and so on for the other lines. Then it is clear that

these lines are on the surface, for each is the intersection of three

corresponding planes of the three pencils, u and v must lie on

the surface, for they both meet W, X, Y, Z, and have each four

points on the surface.

Next x, y, z are on the surface, for each passes through a

centre and three other points on the surface, namely, where they
meet three of the lines W, X, Y, Z.

U meets x, y, z, v
;
and V meets x, y, z, u

;
therefore both

these lines are on the surface. Similarly w meets U, V, X, Y, Z,

and is also on the surface.

There is no need to shew how to find the other fifteen straight

lines on the surface, for this has been done before. We only use

the same rule, namely, that when a straight line has four points

common with the surface, it lies altogether upon it.

Suppose we take U, V, W, X, Y, that all meet the line z. It

is known that the remaining lines of the double six can be found

by continuing to draw pairs of lines to meet four non-intersecting

lines, where one of the pair is already fixed. Therefore we

conclude that five straight lines that meet one straight line are

sufficient to determine a cubic surface.

The geometrical meaning of perspective and protective may
be indefinitely extended. To repeat the simplest case, take a

range of points A, B, C, D, . . . in one straight line, and two points

S and Sj not in the line. The pencils SA, SB, SC, ... ,
and SjA,

SiB, SjC, . . .
,
are perspective, and if one is turned about through
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any angle, the rays still keeping the same position with respect

to one another, the pencils are now said to be projective.

By the principle of anharmonic ratio it may be proved that

if we have any number of systems, any one of which is perspective

to some other one, then, if not already perspective, every one of

the system is projective to any other.

The definition is extended as follows. Two systems are said

to be perspective when corresponding elements of one system lie

upon or pass through corresponding elements of the other, each

to each.

Two systems are projective when both are perspective each to

one of a series of systems which are so related that any one of

the systems is perspective to some one of the others.

To take an illustration. Take a system of conies passing

through four points, and take some straight line having upon it

a range of points A, B, C, D, ...
,
not including the four points of

which no three are in one straight line. If we cause conies of the

system to pass through A, B, C, D, . . .
, they are thereby a definitely

fixed series. If we then join A, B, C, D, ...
,
to a point S, the

pencil of rays thus formed is projective to the series of conies,

and any other pencil that is projective to it is projective to the

series of conies. For the range of points A, B, C, D, ..., are

perspective to the pencils.

Again, take two circles having a common tangent at S. We
find that any ray drawn through S has on it a point of one circle

that corresponds to a point on the other. The two series of

points on these circles form two projective sets of points, each

being perspective to the same pencil of rays from S.

These circles may be projected into conies having a common

tangent at S where the two points of intersection lie on corre-

sponding rays from S.

It is assumed in the following direct method used by Reye to

find the twenty-seven straight lines on a cubic surface, that if

two twisted cubics have a common point S, and are generated by
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protective pencils S, S', and S, S" the twisted cubics have two and

only two common secants.

Tt may be easily shewn that they have not more than two

unless they have an infinite number, for if they have three

common secants and the point S common, they must lie on the

same hyperboloid determined by the three secants, in which case

an infinite number of the generators of the hyperboloid will meet

the two twisted cubics. In this case the cubic surface would

degenerate into a plane, and a surface of the second degree, which

is contrary to supposition.

Let a point Q move along the second twisted cubic, and let

secants be drawn from different positions of Q to the first twisted

cubic, we know that each position gives a definite secant, and

therefore a surface will be generated that gives a plane curve on

a plane section.

Next let a point q move along the first twisted cubic and

'determine a curve on the. same plane section by secants drawn

to vthe second twisted cubic. These curves will have a certain

number of points of intersection, and it is clear that to each

point of intersection corresponds a common secant. If we do

not include the secants corresponding to the point S, we know
there cannot be more than two, and that there are two we can

shew by special cases. For example, let the twisted cubics each

degenerate into three straight lines, two of these will intersect at

S, and the remaining pairs will reduce to four non-intersecting

straight lines which have two and only two common secants.

In both cases, that is, whether the curves are generated by

points moving on twisted cubics, or whether these twisted cubics

have degenerated into straight lines, their degree is the same,

and we obtain the same number of intersections.

Hence we may infer that there are two common secants and

not more than two.

Reye finds the twenty-seven straight lines on a cubic surface

by correspondence.
Let a cubic surface be generated by three projective pencils
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at centres S, S', S", and let any plane through S correspond to a

straight line in a plane P. We see that this is possible, for any

plane in the pencil S may be fixed by its intersection with P in a

straight line. Now every plane of the pencil S corresponds to

planes in the other pencils which by their intersection fix a point

on the surface. Therefore we infer that unless the three corre-

sponding planes intersect in a straight line every point on the

surface corresponds uniquely to a straight line in P.

Next take another plane P' so that every point in P' corre-

sponds to a straight line in P. This is reciprocal correspondence,

for as two points in P' lie on a straight line, so the corresponding

straight lines in P intersect in a point. We may take as an

example the properties of pole and polar.

We finally arrive at the conclusion that to every point on the

surface corresponds one, and only one point on P', provided the

three corresponding planes of the pencils meet at a point.

I. Every straight line on P' corresponds to a twisted cubic

on the surface, for every straight line on P' determines a number

of straight lines through a point on P, which in turn determine

three axial pencils, which by their intersections fix a twisted

cubic on the surface. This is not the same kind as the twisted

cubic on p. 35, and is said to be of the second species.

II. Every plane section of the surface corresponds to a plane
cubic curve on P', for every straight line in P' must meet a curve

which corresponds in degree with the order of the curve which it

represents on the surface, and we know that a twisted cubic is of

the third order.

III. Every straight line on the surface must be represented

by part of a cubic curve on P', for it represents part of a plane

section of the surface.

Next we infer that if we take two twisted cubics on the

surfaces generated by pencils having centres at S, S', and S', S",

then these twisted cubics have two common secants, and that as

these imply that corresponding planes meet in the same straight
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line, and not at a point, we find that in this case a point in

P' corresponds not to a point, but to a straight line on the

surface.

Taking the twisted cubics two and two we have three pairs
of points, that is six points in P' that correspond to six non-

intersecting straight lines on the surface. The six points in P'

do not lie on the same conic, they are called principal points.

Now let a straight line in P' pass through Q, a principal point.

This straight line represents a twisted cubic on the surface of

which, one point represents a straight line on the surface, therefore

the remaining points on the straight line through Q correspond
to a conic on the surface.

Now this conic on the surface is part of a plane section, the

remainder being a straight line LM. Since every plane section

on the surface must cut the straight lines represented by the

principal points, therefore every cubic on P' representing a plane
section of the surface must pass through the six principal points.

Next LM and the conic make up a plane section of the surface

where the conic is represented by a straight line in P' passing

through Q. Therefore LM must be represented in P' by a conic

passing through the five other principal points. Therefore LM
must meet five straight lines of the six non-intersecting straight

lines on the surface represented by the principal points in P'.

But this is true for any five of the six straight lines. Hence we

get a double six on the surface. The remainder of the straight

lines on the surface and their properties are found as before. Or

we may proceed thus : join two principal points Q and R in P',

then the straight line QR corresponds to a twisted cubic on the

surface, of which two points Q and R represent two non-intersecting

straight lines, therefore the other points in QR correspond to a

straight line on the surface. In other words the twisted cubic

on the surface corresponding to QR degenerates into three straight

lines.

Taking the fifteen pairs of the principal points we find the

fifteen other straight lines. We also thus obtain the intersections
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of the fifteen straight lines among themselves, for every straight

line as QR meets those of the other fifteen, the corresponding
lines of which in P' do not pass through Q or R.

From the definition given of a cubic surface we derive the

following construction (Reye).

If four faces of a variable tetrahedron turn about four fixed

points, and three of its vertices move along three straight lines

passing through a point, then the fourth vertex traces out a cubic

surface. For we note that the plane faces of the tetrahedron

generate pencils, three of which being perspective to the fourth

are projective to one another, and therefore generate a cubic

surface by the intersection of their corresponding planes.

Dr Salmon gives a very similar construction for twisted cubics,

the four faces of the tetrahedron turn about fixed lines instead of

passing through fixed points. It is evident that if the "fixed

lines
"

in the second of these constructions pass through the
" fixed points

"
of the first, the twisted cubic lies upon the cubic

surface.

From the first of these we derive a simple construction given

by Grassmann for a plane cubic curve.

Let the three fixed points S, S 15 S2 ,
be the points about which

the three faces of the tetrahedron move, which by their inter-

section generate the surface.

Let the three fixed lines meet the plane SSjSo in A, B, C, and

let them intersect in O.

If we project the edges of the tetrahedron from O upon the

plane SSjS-j, three of the projected edges become the sides of the

triangle ABC, and are fixed in position. If P be a point on the

surface in the plane SSjS.,, then PS, PSj, PS2 will meet the sides

of ABC in three points, all of which lie in the fourth face of the

tetrahedron, and must be in one straight line.

Hence we infer that if a point be taken so that the straight
lines joining it to the angular points of one triangle meet it on

the sides of a second triangle, and the three points of intersection
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lie in one straight line, then the point moves in a plane section

of a cubic surface.

By proper selection of S, Sj, and S2 ,
because we can generate

the surface by three points lying in any plane section, the con-

struction applies to any plane section of the surface.

If we take Grassmann's construction, and use the theorem that

the ratio compounded of the ratios of alternate segments of the

sides of a triangle by a straight line is unity, we find that the

anharmonic ratios P [SBSjC] and P [S^AS^] are equal.

This result is given by Dr Salmon, but appears in another

form in Reye's Geometry of Position.

He shews that a plane cubic can be generated by a pencil of

rays from a point on the curve as T, and a pencil of conies

passing through four points as S, B, Sn C. To each conic

corresponds a ray through TJ and these intersect on the cubic.

Now take the methods of tracing by the two conies. Describe

any conic through S, B, S 1? C, and take another having the same

anharmonic ratio through S2 , A, S1? C, that is to say that if X be

any point on the first and Y any point on the second, then

X [SBS 1C]
= Y [SgASjC].

The relation is unique : to every conic of one system corresponds

one, and only one of the other. Let these conies intersect in P

and P1} then both these points are on the cubic and the chord

PPj passes through a fixed point T. So that we might have

drawn the chord TPPj and supposed P and Pj found by its inter-

section with one of either of the series of conies, through SBSjC
or through S-jASjC.

To proceed, however, with the statement that in a plane cubic

we can take two sets of points SBSjC and SoASjC, and suppose
the cubic generated by the point P where P [SBSjC] = P [SoASjC].

Project the curve so that Sj and C are the circular points at

infinity, then we find that two similar segments of circles described

upon fixed straight lines generate a cubic curve.

If we take these fixed straight lines as parallel and bisected
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at right angles by the same straight line we obtain a symmetrical
circular cubic.

Many interesting properties can be proved about this curve,

which in turn can be projected into the case of the general
cubic.

From the construction P [SBSjC] = P [SoASjC] we may infer

that if the curve has four points in one straight line, it is made

up of this straight line and a conic. For if S, B, Sn C are in one

straight line, then P moves either in this line, or in a conic

P [SoASjC], for the anharmonic ratio to four points is now constant.

Similarly if the ratio P [SoASjC] were constant, then S, B, S 1? C

not being on the conic must lie on one straight line. But this

ratio would be constant if more than six points were common to

the surface and a conic, for if we have a seventh point common
we find by taking two cases that S and B must also lie on the

same conic or lie in one straight line.

We may say then that a plane cubic will degenerate into a

straight line and conic if more than three points are in one

straight line, or more than six on a conic.

Reye uses the proposition that a plane cubic curve may be

generated by a pencil of lines and a pencil of conies to prove that

an infinite number of cubics passing through eight points will

also pass through a ninth fixed point. (French translation,

p. 226.)
"
Among the given points we take four, of which no three lie

in one straight line, we cause to pass through them a pencil of

conies, of which we select five, a, b, c, d, e. The four points

being O, P, Q, R, we call the pencil of conies [OPQR]. The five

conies a, b, c, d, e may be made to pass through five arbitrary

points A, B, C, D, E.

" We can select rays DA, DB, DC which correspond respectively

to the conies in the pencil of conies that pass through A, B, C.

[Compare with the analytical results p. 30 with p. 41.] We can

then draw rays DDj and DE
}
of the pencil D which correspond to

the conies d and e. We may suppose a conic drawn through
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A, B, C, D, touching at D the ray DDn denote it by k. It is cut

by the ray DE
l
in a point E, ,

and is projective through the pencil

D to the pencil of conies [OPQR], corresponding in the same way
that a, b, c, d, e, do to the points A, B, C, D, Ej of the conic k.

"
Every pencil of rays S, perspective to the conic k, generates

with the pencil of conies [OPQR] a curve of the third order which

passes through the eight points O, P, Q, R, A, B, C, D. If we
take upon the conic k the centre of the pencil of rays S so that

the point E
x
is projected by the ray SE, the curve of the third

order passes also through the ninth point E. For one position of

the point S the curve of the third order has in common with the

conic the five points A, B, C, D, S, and consequently has yet a sixth

point T. This point T is situated in the same way upon a conic

of the pencil [OPQR] as A, B, C, and D are, consequently it is

contained by each of the system of curves of the third degree
that passes through A, B, C, D, O, P, Q, R.

" It is only when E coincides with T that all the curves pass

through E."

Reye remarks that the points E
l
and S may be found by

linear construction by use of Pascal's theorem.

ON TANGENCY.

In a cubic surface generated by three projective pencils at S,

Sj, and S2 take at S the plane that corresponds to the point S.

It is clear that we may do this, for every point on the surface is

the intersection of three corresponding planes, one from each

centre. When we draw from S] or S 2 the corresponding planes,

they cut it in secants of the twisted cubics SSj and SS2 that meet

the twisted cubics in two coincident points at S see the article

on secants of twisted cubics.

Since S x and S.2 are arbitrary, every twisted cubic on the cubic

surface passing through S has a secant cutting it at S in two

coincident points, and these secants lie in one plane.
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It is clear then that any plane section cutting the plane at S

in one of these secants has this secant for its tangent at S. For

the secant cuts the surface at two coincident points at S, and

meets it again in one point only.
This may also be seen in another way. Let any plane section

cut the surface, passing through the point S, and let us take the

sections also of the cones generating a twisted cubic passing

through S. The secant in the section lies in the tangent planes

to the cones at S, but the sections of these cones are conies that

intersect on the surface, and since they have the secant as tangent
at S, this secant must also be a tangent to the cubic curve.

We see then that the tangents to all twisted cubics on the

surface passing through S, and also those to all plane sections at

the point S lie in one plane, the plane at S, that corresponds to

the point S in a pencil that generates the surface.

This plane is called the tangent plane to the surface at S.

If two straight lines on the surface pass through S, since they
are tangents at S to sections drawn through S, the tangent plane
at S contains these straight lines, arid is determined by them.

We see then that a plane through three straight lines on the

surface is a tangent plane at the three angular points of this

triangle on the surface. It is therefore a triple tangent plane.

B.



CHAPTER III.

MISCELLANEOUS.

To prove by Pascal's Theorem that the straight lines meeting

three non-intersecting straight lines generate a conicoid, i.e. a

surface, every plane section of which is a conic.

[Construction. Let ABCDEF be a plane hexagon, so that the

opposite sides AF, CD
; FE, BC

; ED, AB meet respectively in

L, M, N.]

Let PI, P2 ,
P3 ; p1} p2 , p3 be two sets of non-intersecting

straight lines in space, each line of one set meeting all of the

other set, let them meet any plane in the points A, C, E, B, D, F.

The plane is not to contain one of the given straight lines.

Denote the intersections Pip2 , P^Pzi psPi by X, Y, Z. Now
X, Y, L lie in one straight line, for they will all be found in

both planes P
lps and P2p.2 ,

and lie on their intersection. Simi-

larly, Y, Z, M lie in the planes P3p3 and P<1p l ,
and X, Z, N in

P3/>2 and Pj/v
Therefore L, M, N are the points in. which the sides of the

triangle XYZ meet the plane, and are therefore in one straight

line, so that A, B, C, D, E, F lie on a conic.

Since five points determine the conic we may consider F and

therefore ps as variable, and any straight line meeting P1} P2 ,
P3

traces out the conic ABCDE.

Hence we find that two and only two non-intersecting straight

lines can be drawn to meet four non-intersecting straight lines

pi> P2> ps> P4- There are two and only two common generators
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to conicoids drawn through Pn P2 ,
P3 ,

and P2 ,
P3 ,

P4 besides P2

and P3 .

Any one of the straight lines on a cubic surface is cut by ten

others in a range in involution.

Suppose in figure 3 that ee is the line 13, ED is 15, and AM
is 14, and the lines 23, 18, 19, 22, 12, 24, 6 and 25 meet the

plane of 13, 14, 15 in e, e
', d, d', C, G, B and K respectively.

Since three straight lines in a plane meet the plane in. a

straight line, and 19, 22, 24; 23, 6, 24 : 6, 25, 22
; 12, 25, 18 are

planes, and AD, AM meet ee in b and b', we find b, b', e, e, d, d'

are the points in which the sides and diagonals of a quadri-
lateral meet a straight line, therefore they form a range in

involution.

Similarly any other of the five pairs besides d, d' form a

range in involution with 6, &', e, e'.

To place
" a double six

"
in position.

A double six consists of twelve straight lines U, V, W, X, Y, Z,

u, v, w, x, y, z any one of the first group, as U, meets five of the

second group v, w, x, y, z, but does not meet any of the remaining
lines.

Take a straight line ee' as the intersection of two planes

represented by figs. 2 and 3. These planes may make any
convenient angle with one another.

The points a, a, b, b', c, c', d, d', e, e, form a range in

involution, a being conjugate to a', b to b', and so on.

In 3 take the straight lines A& and A&' to represent v and U,

and in 2 take A'c, A'c' to represent u and V.

Next on A& and A'c take the points B and B'. Let Ba meet

A&' in M, and let B'a meet A'c' in M'.

Similarly eB and Bd' give G and K.

e'K produced meets A& in C, next Ca meets Aft' in L, and Ld'

meets A6 in E.

K' meets A6 in D.

42
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A similar construction in 2 determines the position of G', K',

C', L', E', D'.

It remains to be proved that the points CGd, LDe, GEa, DMd,
MEe' respectively lie in straight lines.

Considering the quadrilateral CGKB we see that four sides

and one diagonal pass through the points 6, b', e, e', d', therefore

the remaining diagonal CG must pass through d which is con-

jugate to d' in a range in involution, for it is known that the

sides and diagonals of a quadrilateral cut any straight line in

a range of points in involution.

Therefore the points C, G, d are in one straight line. Taking
the quadrilateral LDCK we can prove L, D, e to be in one straight

line.

GECL may be used to prove for GEa', DMBK for DMd, and

BMGE for MEe'. The same line of proof may be used for the

second diagram.
It can now be shewn that the straight lines U, V, W, X, Y, Z,

u, v, w, x, y, z may be represented by A&', A'c', BB', CC', DD', EE',

A'c, A&, LL', MM', GG', KK'.

No proof is necessary for U, V, u, v, for by construction the

points G, K, L, M, &c. lie on these lines, and with regard to

the remainder it will be sufficient to prove that one of the straight

lines, e.g. Z, meets u, v, w, x, y, for the construction will be found

symmetrical.

Suppose then we take EE' or Z.

EE' meets 11 and
t>,

for E is on M and E' on v. Next EE' meets

w or LL', for LEd', L'E'd' are two straight lines meeting in d'.

Therefore a plane may be drawn to contain both of them. There-

fore LL' and EE' lie in the same plane and must intersect. In

the same manner it may be proved that EE' meets MM' and GG',

that is that Z meets x and y.

It is interesting to observe that from this construction all the

remaining straight lines on the cubic surface passing through
the double six can easily be found.

We take a pair X, x with another Y, y, the intersection of the

planes Xy, a;Y is a straight line on the surface.
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One point on this straight line is clearly d. To find another

take a plane (fig. 1) at right angles to ee meeting 3 in SRT and

2 in S'RT', then SRS' in 1 represents the angle of inclination of

3 and 2.

The lengths RS, RS', RT, R~T are measured from 3 and 2, and

set off in 1.

Join SS', TT', they meet in P the second point required.

We thus find six straight lines on the surface passing

through a, d, e, a, d', e. ee' itself is also a straight line on

the surface.

The only straight lines now remaining are those of which the

intersection of the planes U, uZ is an example, that is A&', KK'

with A'c, EE'.

One point of this straight line in diagram 3 must be at the

intersection of EC with A6', and another in diagram 2 at the

intersection of A'c with 6'K'.

When a double six has been placed in position all the

remainder of the 135 points of intersection of the twenty-seven

straight lines on a cubic surface can be found by methods

indicated above, but if we allow that a cubic surface passes

through every point of a double six, the remaining straight lines

with their points of intersection can be found by use of the

propositions stated on page 29, as in Chapter i. p. 26. In other

words, we first state that a straight line that meets four straight

lines on the surface must itself lie on the surface, and secondly
that if six lines a, b, c, a, b', c' are so related that abc, a'b'c'

form plane triangles, where a meets a', b meets &', then c meets c',

the three points of intersection lying in one straight line.

If we take a section of this system of lines allowing only
that they are placed according to the table of reference p. 3, we

can shew that if 10 points of intersection lie on a straight line,

which is obviously a line of the system, then the remaining
16 points lie on a conic, for we can take successive groups of six

points, and by use of Pascal's Theorem shew that they lie on a

conic, because sets of three points corresponding to three lines
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in a plane are so related that one is on the given straight line,

and the other two in a line with it, so that opposite sides of

successive hexagons intersect by pairs on the same straight line.

On the coincidence of straight lines on the surface.

If we take any pair of straight lines on the surface it is

possible to select a double six to which this pair belongs. If we

suppose two intersecting straight lines to coincide while the

others remain different, but intersect as before, it is obvious

that straight lines taken as non-intersectors now intersect, which

is contrary to supposition. Since however we know that two

straight lines drawn to meet four non-intersectors are either

different, coincident or imaginary, it is not contrary to supposition
to take two non-intersectors as coincident.

Even this supposition, when certain lines are given, causes

the geometrical construction to become indeterminate. Therefore

from a geometrical point of view it is safer to suppose all the

twenty-seven straight lines to be real and different, than to

suppose certain lines to move nearer to one another without

breaking continuity, in other words still intersecting according
to the table of reference. It must also be remembered that not

more than three straight lines must lie in one plane, and not

more than two straight lines must meet four non-intersecting

lines. We suppose points of intersection to become indefinitely

near without becoming actually coincident.

The simplest case of coincidence is that of two straight lines

16 and 17, while no coincidence takes place in lines numbered

1 to 15.

When 16 coincides with 17 we see that 18 must coincide

with 19, otherwise we get four straight lines in a plane, namely

16, 18, 19, arid 1, and 1 is not supposed to coincide with either

of the others.

By similar reasoning we find that 20, 21
; 22, 23; 24, 25;

26, 27 coincide by pairs.

We will proceed to prove that these rays of double lines lie
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on a cone of the second degree. It is clear that they all pass

through one point. It may be proved by experiment that any

supposition of coincidence reduces the general table of reference to

one of the others. This subject will be considered in Chapter vn.

from another point of view.

Denote the rays 16, 17; 18, 19; 20, 21; 22, 23; 24, 25; 26, 27

by the letters rlt r2 ,
rs ,

r4 ,
r5 ,

r6 .

Construct a triangle representing the straight lines 1, 2, 3

and mark points at which r^, r2 ... r6 meet them as [rj, [r2] ... [r6].

We note that r^rz meet 1, r
:i
r4 meet 2 and r5r6 meet 3.

It will be found convenient in constructing a figure to place

the points [rj, [r2] ... [rfi]
on the circumference of any convenient

circle cutting the lines 1, 2, 3 in the six given points.

Since the lines 6, r4 ,
r5 form a triangle we mark the point [6]

on the line 1 where the straight line [r4] [r5] meets it. Similarly

r2 7-3 5 gives [5] on 3, and r^i gives [4] on 2.

" Now we know that these straight lines 4, 5, 6 make up a

triarigular section, therefore the points [4], [5], [6] lie in one

straight line.

We find then that the opposite sides of the hexagon which is

a plane section of the pyramid formed by the six rays are so

related that they intersect by pairs that lie in a straight line,

and therefore by Pascal's Theorem lie on a cone of the second

degree.

This property of the rays of a conic node enables us to

determine the form of the surface about the node, for it shews

that the shape must be that of a cone of the second degree.
From these relations we can deduce a construction for the

lines on the surface.

Take a section of the surface made by the lines 1, 2, 3, mark
on these lines

[r-j], [r2], ... [r6] the points at which the rays meet

them. By using the table of reference, noting that where three

lines are in a plane their corresponding points on 1, 2, 3 lie in a

straight line, we find all the other points of intersection of the

lines 4 to 15 with 1, 2, or 3.
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The points in which the rays meet the plane must lie on

a conic. It will be seen that this condition ensures that three

such points as (4), (5), (6) should lie in a straight line by Pascal's

Theorem, so that the fifteen lines comply with the conditions of

the table of reference.

Next take another section that meets the line 1 as 1, 9, 11

(9 and 1 1 are arbitrary), and one point at which one of the rays
r*i r4> rst rs meets the section. The points on 1 must be marked

from the section 1, 2, 3. Using the table of reference as before

we can find the points at which the other rays meet the section

as well as second points on all straight lines that do not meet 1.

Where the straight lines meet 1 we obtain second points

upon them either by taking a third section of lines already found,

or as in the general case figure 1, p. 52.

These data may be used to determine the equation to the

surface thus we know that the form of the equation is

uvw = KceS where S = represents a cone of the second degree.

The six rays lie on the cone S = and thus give its equation.

The rays lie by pairs in the planes u = 0, v = 0, w 0, the plane
x-0 must be given as the plane of 123. The pairs of rays

being so selected that rlt r2 lie in u = Q, r3 ,
r4 in v = Q and rs ,

rs

in w = 0. The constant alone remains and that is found by any
one arbitrary point on the surface, or by any straight line on the

surface which requires only one additional constant to fix its

position.

Geometrical construction for a surface having a binode B3 .

Comparing the tables of reference in the last chapter for the

conic node and binode, we see that the only difference in the

construction for the binode and the conic node is that instead of

taking r,, r2 ,
... r6 as lying on a cone, they lie in two planes, so

the points [rj], [r.2]
... [r6] lie by threes in two straight lines

arbitrarily taken in the plane of 1 2 3 but not intersecting on a side.

The construction to find the remaining lines is much the

same as in the case of the conic node.
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Geometrical construction for lines on a surface having
a binode B

4 .

If we refer to the table of reference it is obvious that we
should first take the triangle tbc, and on t mark a point (E), and

on b and c mark (D) and (B). The straight lines (B) (E) (C)
and (D) (E) (A) give (C) and (A) on b and c. Similarly (B) (D) (a)

and (C) (A) (d) give (a) and (d) upon t.

Next take the arbitrary triangle tad, but mark upon t all the

points (a), (b), (c), (d) and (E) found in the first section. We
need only take the point (A) arbitrarily in this section, for

(c)(A)(B) gives (B), (A) (E) (D) gives (D), and (E) (B) (C)

gives (C).

We have thus found two points on each of the rays.

The rays intersect in the node through which E also passes.

The position of all the rays and the edge is fixed.

v Geometrical construction for lines on a surface having
two conic nodes.

Let the points [r^\, [r2] in the case of one conic node move up
to one another and coincide.

Two points on each straight line can be obtained exactly by
the same method as that used in the case of one conic node.

Geometrical construction for lines on a surface having
three conic nodes.

Take a plane triangle to represent t
l
t2 t3 . [See table of

reference for three conic nodes in Chap. i. p. 16.]

On these lines mark points [Aj, [A2], [A3 J
at which the axes

meet them. Take a point [R a ]
at which a ray meets t^. The

points of intersection of the remaining rays are found on tlt t%

and ts from the planes RjAgR;,, R^Rj, R^r^ r^r^ R^A^.
It will be observed that the points [Aj], [A2], [A3]

must in

the first instance be taken in one straight line, because the axes

are in one plane.
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Subject to this condition the axes may be taken in any

arbitrary position. The intersections of the axes give the nodes

which give second points on each ray.

The case of four conic nodes has already been discussed in

Chapter I. The constructions for two binodes, and three binodes

B3 are not difficult, but the form of the equations to the surface

can not be discovered by the position of the lines on the surface

alone.

The construction for B3
+ one conic node C.2 is very similar to

that for two conic nodes.

In the remaining cases we again find that the lines on the

surface can easily be placed in position, but the form of the

surface must be found from other properties of the nodes.

On the number of parabolas upon the surface, and plane
sections through a straight line.

It lias been stated (p. 30) that if we take the equation to the

cubic surface as uvw = kxyz, and if we take a plane section

through x = 0, u = the conic which completes the section is

found from the equations u = mx and mvw kyz.

If we express the condition that the conic represents two

straight lines, we find ra involved in the fifth degree, but if we
make the conic a parabola, m is involved in the fourth degree.

Thus we have four parabolas of which two or all may be

imaginary.
In some cases the parabola coincides with a section known

already to be two straight lines, but as this only means that

terms of the second degree must be a complete square, we infer

that the straight lines are coincident or parallel. Again two

parabolic sections may coincide, and we appear to have three

parabolas or one.

In this case it is well to note the order in which the sections

take place. Usually we have hyperbola, parabola, ellipse, but

if two parabolas coincide we probably have hyperbola, parabola,

hyperbola.
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Also when passing through the phase two straight lines the

changes are as follows hyperbola, two straight lines, a conjugate

hyperbola, that is to say if we take a section represented by
two straight lines and turn the plane through a very small angle
about a; = 0, u = Q we get a hyperbola the asymptotes of which

very nearly coincide with the straight lines. If the plane were

turned through a small angle in the opposite direction, the

section would again be a hyperbola, having the same asymptotes
but conjugate to the first. The curvature of the section changing

everywhere from convex to concave in regarding the two hyper-
bolic sections.

We note an important exception. When two sections re-

presented by straight lines move up to and coincide with one

another, then the hyperbola caused by moving the section through
a small angle in either direction is of the same kind, and not

conjugate. The reason is clear when the triangular sections have

coincided, the intersection of the pairs of coincident lines is a

conic node, and therefore the sections approximate to those of

a cone of the second degree. We arrive at the same result by

counting the changes thus hyperbola, straight lines, conjugate,

straight lines, hyperbola ;
when the straight lines coincide, the

conjugate disappears.

This subject will be considered later with reference to plane
sections of models.

See Chapter vn. and figure 5, Chapter vi.

In these sections B and C represent a hyperbola, and its

conjugate, while A represents two straight lines, which in each

case make a complete section with the horizontal straight line.

Sections of the form B or C are obtained in the general case,

by turning the plane round the horizontal line in A through a

small angle in opposite directions. When there is a node, C2 ,

the same kind of section B or C is obtained in either direc-

tion.
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On the number of points necessary to determine a cubic surface.

We know that the equation of a cubic surface and therefore

the twenty-seven straight lines upon it may be determined by
19 points upon the surface, not more than 9 being in the same

plane, but a less number of points will be required if they are

related to the surface in any special manner.

To take an illustration from conic sections.

Usually five points are required to determine a conic, but

if we state that two given points are the extremities of the major
axis we actually give four points, so only one other arbitrary

point is required.

The tetrahedron in the following construction is taken from a

figure in a paper by Mr H. M. Taylor already referred to.

Take the tetrahedron as ABCD cut by four planes

Ix + My + Nz + Pu =
0,

Lx my + Nz + Pu = 0,

Lx + My nz + Pu = 0,

Lx + My + Nz pu = Q,

the planes of the tetrahedron being x = 0, y = 0, z = 0, n = 0.

The lines 1, 2, 3 are the intersections of y = 0, z 0, u Q

with Ix + My + Nz + Pu
;

4, 5, 6 of x = 0, z = Q. u = Q with Lx - my + Nz + Pu =
;

7, 8, 9 of x = 0, y
-

0, u with Lx + My - nz + Pu =
;

10, 11, 12 of x = 0, y = 0, z = with Lx + My + Nz - pu = 0.

The general equation may be put into the form

(L + 1} (M +m) (N + n) (P +p)xyzu= (-lx+ My + Nz+ Pw) x

(Lx my + Nz + Pu) (Lx + My nz+ Pu) (Lx + My + Nz pu).

It is evident that this surface can be constructed if we
determine the ratios the constants L, M, N, P, I, m, n, p bear

to one another.

If the tetrahedron of reference be a regular one, having all

the edges equal, certain points of intersection seven in number
taken upon the edges of the tetrahedron divide them in the ratios
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of these constants. If the tetrahedron be not regular these points
still determine the ratios of the constants, but the lengths of the

edges have to be considered.

Take the tetrahedron as regular, the base being ADC, B the

centre of the triangle marking the projection of the vertex of

the tetrahedron upon the plane of ADC.

In BD mark the point (12, 10). This determines the ratio M
In BD produced (2, 8) M
In AD produced (4, 9). L

In DC (8,9) n

In DC produced (6, 1) N P.

In AC (1,3) I N.

In BA (4,5) L m.

(4, 9), (4, 5) produced gives (4, 6) in. BD,

(6, 1), (1,3) (1,2) in AD,

(8, 2), (2, 1) (2, 3)iiiAB,

(4, 9), (8, 9) (7, 9) in AC,

(8, 2), (8, 9) (7, 8)inBC,
(7, 9), (7, 8) (7, 12)inAB,

(7, 12), (10, 12) (11, 12) in AD,

(6,1), (4, 6) (5, 6)inBC,

(5, 6), (4, 5) (5, 11) in AC,

(5, 11), (11, 12) (10, 11) in DC,

(1,3), (2, 3) (3, 10)inBC.

13, 14, 15 are found as the intersections of known planes,

e.g. the planes (4, 13, 9) and (13, 10, 3) are known because 4, 9,

10, 3 have been found, and the intersection of these planes is 13.

The numbers 16 to 27 cannot in this case be found by

geometrical construction, but if one point on one of them is

determined by trial, or by a quadratic derived from the equation,

the remainder can be placed in position.

We note that though the seven points are connected with an

analytical equation, the finding of the points of intersection

of fifteen straight lines from seven given points is entirely

geometrical.



CHAPTER IV.

ON MODELS OF CUBIC CONES.

WE may suppose a model of a cubic surface to be built up by
a number of parallel horizontal sections each of which is a plane
cubic curve.

Now generally if the intersections of the twenty-seven

straight lines on the surface take place at finite distances from

one another, and if parallel sections be drawn at infinite dis-

tances above and below the model, these sections are equal and

similar but reversed in position. Further if the surface be cut

out of a solid block the hollow and solid portions are inter-

changed.

Figures 3 and 4 are horizontal sections of the model of a cubic

surface (Chapter vi.) at a very great distance above and below

it. Now we observe the following facts : the curves are equal and

similar but reversed in position, the oval is solid in the first

(figure 3) upper section and hollow in the lower (figure 4), so

also are the hyperbolic portions solid in figure 3 and hollow in

figure 4. In other words the surface approximates to a cubic

cone. A sketch of the sheets of such a cone is given on page
64. The dotted line indicates that the vertices of both sheets

are at the same point, they are drawn separate because it is

difficult to shew the lower part of the first sheet within the

second.

When carved out of a single block the upper part of the first

sheet is a solid cone, each horizontal section of which is an oval
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First sheet of surface of cone.

Second sheet of surface of corve.
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(figure 3) ;
the lower part is a hollow cone, the sections of which

give the hollow oval (figure 4), while the sections of the second

sheet in both cases give the hyperbolic branches. Looking at

the second sheet we see why this is so
;

it consists of three

elevations and three depressions; a line of greatest elevation of a

raised portion being produced through the vertex gives the line

of greatest depression in the opposite direction. Figure 2 shews

a vertical section taken diagonally across the horizontal sections

shewn by figures 3 and 4, VDE being a vertical section of the

upper conical portion and VBC of the lower hollow cone. The

vertical section is taken in each case across figures 3 and 4

from the corner of the portion marked K at right angles to the

oblique asymptote. AB is a section of the second sheet between

K and the oval. VF marks approximately a line of greatest

elevation, and VA of greatest depression. Both sheets of the

cone pass through V. The horizontal section through V is shewn

B. 5
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on figure 1. The sections immediately above and below change
in curvature from convex to concave, and vice versd, with refer-

ence to solid and hollow portions. Thus take parts of sections

marked K, L, M. Above figure 1, as in figure 3, the solid

portions bounding K are convex hyperbolic branches, and the

oval is convex. Below figure 1, as in figure 4, K is bounded by
a concave solid portion which we may also call a convex hollow

curve. In figure 1 the boundaries are neither convex nor con-

cave, being straight lines.

To describe the model of such a cone as that shewn in figures

1, 2, 3, take its equation as

xy (x + y nz) z2 (Lx + My + Nz).

To ensure an oval the values of L, M, N must be so taken

that if z = 1 a point on the curve must lie within the asymptotic

triangle x=Q, y Q, x + y~n. Take any convenient value for

z and trace sections, such as figures 3 and 4, upon two thin

pieces of wood. Cut out the curves in the lower section (figure 4),

but only pierce holes at convenient distances on the curve in

figure 3. Fix the pieces of wood at any convenient distance

apart horizontally by side supports. Pass wires or threads

through the holes in the upper section and tie them down to

corresponding points in the lower section. We thus obtain a

cone of threads.

A model of plastocene may be made on these as generating
lines

;
then we find as required a solid upper cone, and a hollow

lower one, with a second sheet from which a horizontal plane
would cut three solid hyperbolic branches above the vertex and

three hollow ones below it. If there is no oval the cone consists

of the second sheet only.

It is convenient to take two asymptotes at right angles,

because for any given value of x we only have to solve a

quadratic, not a cubic for y.

The special cases are : (1) the oval may contract to a point,

(2) the curve may have a node, or (3) it may have a cusp.



CHAPTER V.

ON MODELS OF SURFACES WITH FOUR CONIC NODES.

As in the case of the cubic cone surfaces may be represented

by building up a solid model. Fix certain wires, or solid

portions in wood, and cover with plastocene, or some other

modelling material. We thus get a model as definite in form

as a sphere or as an ellipsoid. It is necessary then to consider

space divided by a cubic surface into two parts, hollow and solid.

Usually a straight line cutting a surface, thus represented,

passing at infinity through solid space in one direction lies in

hollow space at infinity in the other direction, for it cuts the

surface three times. When one of the three points of inter-

section lies at infinity the straight line only appears to cut the

surface twice, and apparently lies in the same kind of space in

both directions.

As before explained two sections may be the same in form yet

differently represented. Take for instance figures 1 and 4, p. 68;
these represent plane sections of a cubic surface, an oval and

three infinite hyperbolic branches, a small part of each of the

branches being shewn in the figures. Now in the first figure

the oval and the branches are solid, but in the second hollow,

yet the same equation may be used for both.

It will be convenient to call these sections " unlike
" but of the

same kind. Sections will be called of the same kind when their

asymptotes are parallel, and when they are of the same form,

i.e. as above an oval and three branches, or when two sections

52
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consist of a straight line and an ellipse, or of a straight line and

a hyperbola. Parallel sections have parallel asymptotes. Take

3 A 4 AAA
a section of a cubic surface consisting of three straight lines,

none of which passes through a conic node, and are therefore mere
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lines. Straight lines on the surface that may be considered as

formed by the coincidence of two or more straight lines pass

through nodes, and are called nodal rays.

If we take this section (figure 2) and move the plane of

section parallel to it above and then below through small

distances, we obtain sections of the form (figure 1
)
and (figure 3),

or vice verad. The curvature of these sections is opposite. In

figure 1 the solid portions are convex, in the latter concave.

This rule does not apply when the triangle is formed by
three nodal rays, or more strictly it probably does not apply ;

we have to consider how many triangular sections have coincided

to form the section in question.

In the case of a surface having four conic nodes, each of

these nodes (called by Cayley C2) approximates to a cone of the

second degree. There are other nodes of a higher order to be

considered later. The shape of these nodes (C2)
is shewn in

figures 5a and 6. Every section through a certain straight line

as KN is of the form 5 and Qa respectively when very near the

node.

We will call 5 a solid node and 6a a hollow node.

When the equation to the surface is slightly altered by vary-

ing the constants, or adding other terms with small coefficients,

the node does not "break." The solid node takes the form 5b

and the hollow node that of Qb, every section about KN being

approximately the same.

In the first case we have a solid, and in the second a hollow

tunnel.

It is evident from the shape of the nodes that a plane section

parallel to the triangle formed by joining three conic nodes (C2)

and near to it has the same curvature whether on one side of it

or the other, which is different from the case of a triangle formed

by three mere lines.

In drawing sections for models it is often found convenient

to take a regular tetrahedron as tetrahedron of reference, the

sides of the base being straight lines on the surface which is if
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possible taken as symmetrical with respect to the sides of the

base. The equation to any section parallel to the base may
then be written

3 (x
-
p) y*

= a? + 3x2
p - ip

s + tc (I),

using rectangular Cartesian coordinates, the origin being at the

centre of the symmetrical figure, and y = is perpendicular to

an asymptote, p and k are constants depending upon the

position of the section.

The sections are shewn by figures 1 to 4
;
there is also the case

of three infinite hyperbolic symmetrical branches without an oval.

To determine p and k we take a section perpendicular to the

base, and passing through an angle bisecting the opposite side.

By measuring ordinates in this section we find the values of x

when
2/
= in equation (I).

These values being known p and k

can be determined.

For example take figure 16 of this chapter.

This is the vertical section of a cubic surface, every horizontal

section of which has an equation of the form of equation (I).

Draw a vertical through A.

Any horizontal section cuts this figure in a horizontal line,

and distances measured from the vertical through A are the

values of x corresponding to the value y = in equation (I).

One of these points is sometimes not within the drawing, but

two are enough to fix the values of p and k. We can then trace

the horizontal section corresponding to any horizontal line in

figure 16.

Thus O is the centre of the oval (figure 1) where the vertical

through A in figure 16 meets it. The axis of x in figure 1 cuts

the curve in L and V and again at a point T on the oval. OL
and OT may be measured as a and b, and OV may be taken as

c. Since a, b, and c are the roots of

xs + 3x2
p -

4/>
:i + 4k 0,

we find c from ab be + ac = 0, and p and k from

3p = a + b - c and 4& - 4p
3 = abc.
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The curve is an oval and three infinite branches, or three

infinite branches simply, except when k we then have three

straight lines.

It was stated, Chap. i. p. 17, that the shape of a cubic

surface in which there are no singularities, and where the

straight lines on the surface are real, may be derived from one

having four conic nodes, as below.

\

Again, so long as the nodes do not coincide the properties
of the surface are not altered, except by moving the transversal

plane into different positions with respect to the nodes.

First then let the transversal plane have all the nodes on the

same side of it, and let the plane move to infinity.

The equation to the surface may be written

x* + y
2 + z2 = 2xyz + 1,

the coordinates of the nodes being (1, 1, 1), (1, 1,
-

1),

( 1, 1, 1), and (1, 1, 1) in rectangular Cartesian co-

ordinates.

A sketch is given of a model of the surface. It consists of

a central solid somewhat like a regular tetrahedron with spherical

triangles upon its faces, and four infinite cones one at each node.
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Sections of one of these infinite cones are given, the oval being
a transverse section perpendicular to a straight line joining the

node A to the centre. The other is a plane section through AMm,
where M and m are symmetrical points on the oval as shewn in

the figure.

The complete section through the oval is made up by three

infinite hyperbolic branches cut from the other three infinite cones.

AB, BC, CA are straight lines on the surface
; Art, B&, Cc are

parts of parabolic sections, while ab, be, ca are circular arcs.

These sections will be discussed in the construction of a

model.

To construct a model take four blocks of wood shaped as

equal regular tetrahedra, edge 3 inches, to form the corners

of the frame (figure 11), which is itself a regular tetrahedron,

edge 14 inches. The figure shews one face of such a figure and

the faces of three corners. The fourth corner is not shewn,

being behind the model in the centre. By inserting fine screws

(with eyes) at the points X in the faces near the middle points
of the inner edge of the smaller tetrahedra, and attaching wires

to these, arranged parallel to the edges of the frame, we form a

regular tetrahedron three of the vertices of which lie at the

points A, B, and C. D the fourth vertex of this central tetra-

hedron lies behind the centre of the triangle ABC. Tie the wires

firmly together at A, B, C, D. Make the central solid tetra-

hedron of plastocene having the wires as edges, and four conical

solids at each angle being still guided by the wires. Figure 11

shews also the section passing through the angular points A, B, C.

Now commence working up the true shape of the surface on

each face. This may be done by drawing sections in cardboard,

cutting away the part representing the solid section, and fitting

the curve thus obtained to the model. Some of these sections

are given, figures 7 to 10. Take a plane containing AB passing
also through H the middle point of the edge CD.

The section here (figure 8) is a parabola, together with the

straight line AB, arid gives a clear view of the nodes at A and B.
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Another equal, similar section passes through CD and the middle

point of AB, and is at right angles to the plane of ABH.

11

Sections 7, 9, and 10 are at right angles to the planes of both

these parabolas, the extremities of the major and minor axes of

the sections, which are conies, moving along these parabolas.

Suppose then we take the shape of the surface, section by
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section, with reference to the parabola AHB (figure 8). Above
AB the section at right angles to AHB is a hyperbola, the major
axis of which is the double ordinate of the parabola, as KN is the

major axis of figure 7. The minor axis of this section is given

by the fact that the difference of the squares of the semi major
and minor axes is equal to double of the square on the radius of

the circle (figure 9). This circle is the central section at right

angles to AHB, that is the section through the centre of the

tetrahedron ABCD. Its radius is the ordinate of the parabola at

the centre.

Next as we come nearer to AB, between KN and AB, the

minor axis of the hyperbola diminishes till at AB it vanishes,

and the hyperbola becomes two coincident straight lines. On
the surface however AB represents four coincident straight lines.

Between AB and FG the section becomes an ellipse.

Near AB the minor axis of the ellipse is very small, and is

equal to the double ordinate of the parabola in a section equally

distant from the centre, at right angles to AHB, and below the

centre. For example, R's' = RS where PQ and RS are equally

distant from the centre.

The minor axis of the ellipse continues to increase and the

major axis to diminish till at the centre we find the circle,

figure 9.

As we might expect the sum of the squares of the semi-major

and semi-minor axes of the ellipse in any section is equal to

double the square on the radius of the circle.

It is not convenient to take sections at right angles to AHB

further, for we can take the same sections over again, working

up with the other parabola at right angles to AHB and inverted,

passing through the nodes C and D and the middle point of AB.

If we take sections parallel to the triangle ABC (figure 11)

we have symmetrical sections (see page 70). In front of the

plane of the paper and parallel to it we have three infinite solid

branches cut from the conical solids at A, B, C provided the

plane does not cut the central tetrahedron. As the plane gets
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nearer to the centre it must also cut the central tetrahedron,

thus giving an oval and three infinite branches. In the plane
of the paper K = and we have the triangular section ABC.

If the section continues to move towards D we still get an

oval and three infinite branches, except that at D the oval

becomes a point.

The sections obtained as the plane moves further from the

centre have already been discussed in describing the sketch of

the model.

The equations to all these curves are of the form given on

page 70.

The sections at infinity do not become equal, similar and

reversed, as stated in the last chapter. The reason is that all

points of intersection of lines are not at finite distances, and this

was mentioned as a necessary condition. But suppose we take

the equation to the surface as

Da(3y + AS (a/3 + /5y + ya)
=

0,

D and A being of the same sign.

The transversal plane is now parallel to figure 11, but not

at infinity, still the nodes are all on the same side of the

transversal plane.

The three infinite branches proceeding from the conic nodes

A, B, C now unite to form one continuous sheet in the neighbour-
hood of the transversal plane, and the sections at infinity parallel

to the triangle ABC in front of the plane of the paper are a

hollow oval and three infinite hollow hyperbolic branches, which

are equal, similar and reversed as regards sections at infinity

behind the plane of the paper which consist of a solid oval and

three infinite solid branches.

All the nodes are of the same kind, being nodes of the same

form as double solid cones of the second degree.

In the next surface we can take the transversal plane as

parallel to one of the faces of the tetrahedron of reference and

bisecting the three remaining edges. At one vertex A, which is
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a h k 2
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separated from the rest by the transversal plane we have a solid

conic node, and hollow ones at B, C, D.

The symmetrical equation to the surface in tetrahedral

coordinates may be written

a/3y
= 8 (aft + j3~y

+
yai).

The equations of the sections may be expressed in Cartesian

coordinates without difficulty.

The horizontal sections parallel to 8= are of the form shewn

in figures 1 to 4, there being also the case of three infinite

branches without an oval. To obtain a clear idea of the sections

the infinite branches should be more fully drawn, in the figures

1 to 4 the vertices only are given. Compare figures 3 and 4,

Chap. iv. We therefore find vertical sections, and the horizontal

sections are then found as on page 70.

Figure 15 represents a vertical section through A bisecting

the edges DB and DC of the tetrahedron.

The curve is known to be a nodal cubic, so that if we take

rectangular Cartesian coordinates, the origin at A, and the axis

of x measured positive in a downward vertical direction, the

equation to the curve is of the form

(x
-
a) y

2 = my? (x - 6).

Take the height of the tetrahedron as 80 units, we find that

the curve cuts the vertical through A at a distance of T
9
^ x 80 = 72;

also the curve cuts the transversals at (40, 33), and the edges of

the tetrahedron at (80, 33), for the edge of the tetrahedron is

very nearly 99. The equation reduces approximately to

(- 60) y
a =-4254aja

(aj -7),

/. x --=-16, 0, 12, 16, 24, 31, 40, 48, 56, 60, 72, 76, 80,

y= 9, 0, 9, 12, 18, 24, 33, 44, 52, oo
, 0, 25, 33.

Intermediate points can be obtained from the equation.

Next take a vertical section through A and B, which also

passes through the centre of the tetrahedron and through the

point P of figure 15, and is represented by figure 16.
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Take the axis of x again vertical through A. Then as before

AP = 72.

AB is the position of the edge of a regular tetrahedron where

AP is the perpendicular through the vertex to the base. Its

position can be found by geometrical construction, or we may
take the coordinates of B as very approximately (80, 56 -6), taking

40s/2 = 56'6. It is seen by inspection that the curve completing
the section is a conic that has horizontal tangents when x 40

and when ce = 72. That is at the plane of the transversals

and at P.

It also passes through B and the origin.

The equation to the conic is then

10*-
2 - Wxy J2 -

\tf-
= 720 (x

- y J2).

From this equation the hyperbola can be drawn.

Now to construct the model take a frame made by joining

corresponding angles of two parallel, equal, equilateral triangles.

The lower of these should be drawn, but not cut out, upon
a piece of wood, rather larger than the triangle. Then a piece
should be cut out as indicated by the figure Ipnrmq in figure 13,

for we need a hole beneath to work the under part of the model.

The positions of the points I, m, n, are found from figure 16, m
and n being symmetrically placed at the same distance from the

centre as
I, along bisectors of the angles of the triangle.

Only part of the base triangle is drawn.

Next cut a figure out of a thin piece of wood of the shape

abcdefytz shewn in figure 13. This is not part of the base, but

is shewn on figure 13, it is to be placed in a plane parallel to

the base as shewn by the letters az in figure 14.

Now take the upper equilateral triangle ;
this is to be fixed

by three uprights as HF and KG (figure 14), so that its angular

points are vertically above those of the base at such a height
that the sections 1 5 and 1 6 exactly take up their proper positions.

Before being placed in position the points L, M, N should be

found and holes bored for wires.
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OL = OM = ON measured along the bisectors of the angle and

OL is taken from figure 16, O being the point at which the

vertical from A meets the horizontal through L (figure 16).

Figure 14 represents one of three equal vertical faces each con-

taining a side of 12 and 13 as FG and HK. The side RS would

be pulled in by the wires attached to it, but this is prevented by
the piece abcdefytz, which is placed in a horizontal position so

that the sides az, cd, fg, fit against the sides such as RS and are

secured to them by small screws at a, z, c, d, f and g. If the

lower part of RS and of the other two corresponding faces is

fastened to the base, the wires attached at R and S will only
tend to keep them more firmly in position. We also find that

abcdefytz helps to support the plastocene of which the model

is composed. Pins of the right length may be driven into it to

mark the position of P and other points on the curves shewn by
the figures 15 and 16.

There are of course three sections such as 15 or 16. To fix

the wires representing the sides of the tetrahedron place \-l, Mm,
Nn in position by passing through the holes L, M, N, and securing

below at the points I, m, n. Then wires are attached at the

points . R, S and carried parallel to the sides of the base to

corresponding points on the other faces.

The directions of these wires are shewn in figure 12. They
are not in the plane of figure 12, but parallel to it, the true

position of R and S being shewn in figure 14. These wires lie in

the plane of B, C, D, and pass through these points as shewn in

figure 12. They meet the wires IJ, Mm, Nw in B, C, D.

To place the wires representing the transversals we note first

that their plane is halfway between A and the plane of B, C, D,

and secondly that they form an equilateral triangle equal to

BCD but inverted, as shewn by the figure pqr in figure 13
;
the

middle points of the sides of this triangle lie on the edges of the

tetrahedron.

Producing the sides of pqr to meet the sides of the base we

obtain the points h, k (figure 13) and then measure the distance
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hk in figure 14, placing it so as to be bisected by the vertical

through A, and halfway between A and RS. Having found

h and k we find the corresponding points in the other three

faces, and fix the transversals in position, as shewn by the

triangle pqr.

The equations to the horizontal sections have been given on

page 70. It has also been shewn there how to find them from

the vertical section (figure 16).

Figure 15 gives additional points that help to verify results.

The curve at T when produced forms a ridge of an elevated

portion of the surface, while the curve at Q produced marks a

line of greatest depression.

The curves at X produced approach to a horizontal asymptote.
The model of a surface having twenty-seven real straight

lines is given in the next chapter (figures 6 to 11). If we

suppose this model to become symmetrical, and three holes to

close up to hollow nodes, while the base of the upper portion
contracts to a solid conic node, we obtain a fair idea of the

model of the surface under consideration.

The third case to be considered is that in which two nodes

are on one side of the transversal plane, and two on the other.

We find as we might expect two hollow nodes and two solid

ones. If we suppose one line on the transversal plane to move
to infinity, where the plane of the transversals is parallel to two

opposite edges of the tetrahedron forming the nodes, and midway
between them, we get a symmetrical surface.

However we do not get a cubic curve if we take planes

parallel to the plane of the transversals, but a conic section.

In this particular it is something like the first surface (page 71),

but we note the following differences A horizontal section

(parallel to the plane of the transversals and at a considerable

distance above it) consists of a solid ellipse, and as we come

lower this form still continues to the edge AB (figure 22); we
then get a straight line, or rather four coincident straight lines,

for the minor axis of the ellipse vanishes; below AB to the

B. 6
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centre O we have hyperbolic sections, which at the centre

reduce to two straight lines (figure 19). But on page 73 the

order of these sections was exactly reversed.

We take as the equation to the surface

referred to rectangular Cartesian coordinates. The origin is at

O, and axis z vertical, the axes of x and y are the remaining
transversal lines (figure 19). The coordinates of the nodes are

(V2, 0, 1), (- ^/2, 0, 1), (0,
-
^2, -

1), and (0, ^2,
-

1).

First take two sections, vertical, through the nodes A, B and

C, D respectively. As parts of these sections are the straight

lines AB and CD the section is in each case completed by a

symmetrical conic.

Figure 22 represents the line AB together with the corre-

sponding hyperbola, and figure 20 is the section through CD.

The vertical section through a transversal is in either case

represented by figure 21.

Just as on page 73 we used the parabola as guide for drawing
horizontal sections, so here we use figures 19 to 22.

A model may be described. Cut out of a piece of wood a

square hole (figure 18) and fix above it another square (figure 17)

by uprights as indicated. The height of the uprights is shewn

by the vertical sections. On the upper section mark the points

a, b, c, and d, and on the lower one a', b', c', d'.

aa, bb', cc', dd' give the position of the edges of the tetra-

hedron, represented as before by wires.

a, b, c, d, and a', b', c, d' are found from the fact that they
are the points at which the inscribed ellipses touch the squares.

The axes of the ellipses XY, LM, PQ, Im are shewn in the sections

20 and 22.

The points E, e are taken from figure 21.

The wires representing the transversals (figure 19) are fixed

at the middle points of the uprights at the sides of the squares

(figures 17 and 18).
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The edges of the tetrahedron should meet at A, B, C, and D,

and they should be intersected also by the transversals, except
the edges AB and CD, which lie in parallel planes. The general
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axes of the lower set of ellipses lie in the same direction as the

major axes of the upper, and vice versa. (See figures 17 and 18.)

The lower square was cut out in figure 18 to work the model

from beneath. The nodes at A and B are solid nodes and at

C and D hollow.

The axes of the horizontal sections, whether ellipse or hyper-

bola, are very easily expressed from the equation to the surface,

for if k be the height of any section above the centre, the squares

on the semi-axes are h + 1 and h 1 above AB, and h+ 1 and

1 - h between AB and O.

Every section below O is exactly equal to that at the same

distance above it, but turned through a right angle, and solid

and hollow interchanged. The infinite sheet between AB and

CD has two elevations and two depressions, not three as before
;

this is because a transversal is projected to infinity. Compare

Chapter vi. (figures 12 and 13).



CHAPTER VI.

ON MODELS OF CUBIC SURFACES HAVING TWENTY-
SEVEN REAL STRAIGHT LINES.

IT was stated that Zeuthen had proved by the theory of

continuity that the forms of cubic surfaces having twenty-seven
real straight lines may be derived from those having four conic

nodes. Now taking the model described on page 73, and vary-

ing the equation to the surface by adding terms having small

numerical coefficients, we obtain a surface somewhat similar in

shape but no longer having nodes at A, B, C, and D.

Compare the node at B (figure 8, Chapter v.), which is again
shewn by figure 1 in this chapter, with the sections shewn by

figures 2, 3, 4.
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When the terms are added to the equation the section at B

takes the shape of figure 2, the horizontal section at E being two

straight lines.

We move the horizontal section lower, it takes the shape of 4,

and then again still lower that of another section shewn by 3.

Next we probably find the hyperbola changes to a parabola,

and the parabola to an ellipse.

In these changes the transversal is still supposed at infinity

or at a very great distance.

If this is not the case the sections must be taken as passing

through the transversal, and not parallel.

We find then that the four coincident straight lines of

figure 1 are now replaced in the general case by two pairs of
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straight lines and a parabola. If the transversal is not at

infinity we usually find two parabolas.

Taking the sections about each transversal for each node we
find twenty-four straight lines, a double six for each node. See

page 22. These with the transversals complete the twenty-seven
lines.

We need to examine the shapes of sections of the surface,

in the general case, when a plane is drawn through a straight

line on the surface. These are shewn in 5.

A circle is drawn in E, F. G
;

it may be replaced by an

ellipse, and in B or C one of the infinite branches of the

hyperbola may move to infinity, leaving a straight line and a

parabola.

Again, solid and hollow portions may be interchanged. Thus

in A we may have a hollow triangle with hollow branches at the

vertices, the remainder being solid.

Tt is convenient to call such a section A', with similar notation

for the other sections.

The section H needs special notice. It is not, strictly speaking,

a section of the general case, for it represents a transversal

crossing coincident lines. The meaning of " transversal
"

is

clearly seen, for the surface crosses the coincident lines at the

transversal, being represented as hollow on one side of it and

solid on the other.

The transversal may itself coincide with the coincident lines,

but though apparently the same section, this case must not be

confused with that in which the transversal moves to infinity.

We note also that in A the area of the triangle may become

zero, this does not cause any singularity in the surface.

Comparing the equation on page 24 with the model, page 73,

we see that the diagonal surface corresponding to the four conic

node surface, having its transversal plane at infinity, has for its

equation
x2 + y

1 + z* + 2xyz -5 = 0.

Three straight lines on the surface are in the plane at infinity.
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The shape of the surface is that of a central solid with four

infinite branches each symmetrical about straight lines drawn from

the origin to the points at which the nodes were situated in the

corresponding nodal cubic. The surface about these points has

assumed the shape described on page 85. See also page 71.

The twenty-four remaining straight lines lie by pairs in the

planes s=l, z = l, z ^5 and z = -J5, with corresponding

planes for the other axes.
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The pentahedron has for its faces the plane at infinity, and

the planes x + y + z-I=Q, x y z 1=0, x y + z 1=0
and x + y z 1 = 0. (See page 24.)

We must take the constant 4 as the equation to the plane
at infinity, so that the sum of these equations may be identically

11

zero. The sum of their cubes will then reduce to the given

equation.

It has been mentioned in the last chapter that the surface

having a solid conic node and three hollow ones can be derived

from the model of a surface shewn by the figures 6 to 11.

In this model all the twenty-seven straight lines are real.

The position of these lines was first found by adjustment, and
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verified by equations. Horizontal sections were built up by

layers of wood rather smaller than the actual size. The whole

was then covered with plaster of Paris to measurement, and the

lines placed upon the model.

In order to use rectangular coordinates conveniently, the

lines 4 and 13 were taken as axes x = 0, z =
; and y = 0, z =

;

and the line 9 in the plane of z cutting the other axes

12 inches from the origin.

The equations of some of the planes are as follows :

x = contains 4, 12, 2
; y = 0, 13, 14, 15

;

= 0, 4, 9, 13; a; + y+(4$)-12J = 0, 9, 7, 8
;

1 la: + 10</ + (27)s- 110 = 0, 12, 7, 15;

and 10o: + Uy-(12)-24 =
0, 2, 14, 8.

Then we may write down the equation to the surface as

= z(Ilx+ lOy + (27) z - 110) (10* + Uy- (12|) z- 24).

The heights of the intersections (14, 25), (20, 2), (12, 15)

above the plane of z are in the proportion 3:2:1.

The straight lines 20 and 25 divide the line 9 intercepted

between 4 and 13 internally in the proportion 25 : 2, 20 meeting
it near 13, and 25 near 4.

The projections of the straight lines 1 and 11 upon z

divide the line 9 as intercepted between 4 and 13, externally in

the proportion 1 : 6, and 4 internally in the ratio 1 : 2, 1 being
nearer to the origin on the line 4.

By drawing any triangular section as (4, 9, 13) and marking
the points we know, and using the rule that three points at

which any plane of the table of reference meets it intersect 4, 9,

and 13 in a straight line, we find points upon the remaining
lines.

To find the value of M we take the equation to the line 1

as found from the condition that it passes through the point
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(2^, 15, 0) and meets the lines 15 and 2, the equations to

which are

y = 0, x + (2|) z-10 = 0; and x = 0, Hy - (12) - 24 = 0.

We thus find the equation to the line 1 as

x + 2 : 545 : : y - 15 :
- 2382 : : z : 576.

Substituting 542^, 2367, 576 for x, y, z in the equation to

the surface, for every point of 1 is on the surface, we find the

value for M.

The above method was indicated on page 25.

It is simpler, however, in this case to find the equations to

straight lines from those already found, and not from that of

the surface, or better still on a model to find the sections by

drawing, and test by analysis.

In this model the lines were so adjusted that the plane

x+y = lty is the plane of the lines 9, 20, 25.

Also 20 and 25 meet the planes y and x = where they
meet 2 and 14, which are known points.

The form of the surface at infinity approximates to the cubic

cone which has been already described in Chapter iv.

Figure 6 shews the under part of the model with three holes,

which in the model (page 78) contract to three hollow nodes.

Figures 7 and 8 are vertical sections, to a smaller scale, to

illustrate the existence of a hole.

As section 7 revolves, we get a nodal cubic, then figure 8, then

a nodal cubic again, and the figure 7 again represents the section.

Figures 9, 10, 11 are views of the model standing upon a

table, and turned round in order to shew from above the holes of

figure 6.

We observe that a double six passes through each hole, also

between each hole and the next.

A double six, 3, 25, 14, 6, 15, 10, 2, 20, 5, 24, 12, 21, passes

upwards along the central conical portion from which the oval is

cut at infinity (Chapter iv.).
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The same lines, as we should expect, also are continued down-

wards along the hollow conical portion below.

We can reduce the surface to one having conic nodes in

several ways, for we have the choice of making an opening close

up, or of making the solid portion between two holes contract,

and thus obtaining a solid node.

For example, let the lines 1, 13; 14, 6; 4, 11; 22, 16;

23, 17
; 10, 2 coincide by pairs (page 9).

The hole in figure 11 closes up, and we obtain a conic node.

It is easy to see that the other holes may close up, the lines

coinciding as shewn in the table of reference for two and three

conic nodes.

When we come to the fourth node it is necessary to suppose
the oval shewing the upper part of the model in the figures 9, 10,

11 to contract, we thus get a fourth node.

The surface corresponds to that described in the last chapter,

of three hollow and one solid conic node.

The lines 8, 18, 27 are the transversals.

If we let a conic node move up and coincide with another

part of the surface we obtain a binode. A binode does not

stand out from the rest of the surface appearing as the vertex

of a cone of the second degree, but causes what seems to be

a fold in the surface.

The transverse section of a binode B3 is given in the next

chapter, figure 4. The cusp shews a wedge-shaped portion of the

surface. There is also a model of the binode B
5 .

The reason for this form of the surface is given in Chapter vn.

The cone shape appears when an even number of plane triangular

sections coincide.

Lastly, we take a model of an irregular shaped cubic surface

in which two nodes are above the transversal plane and two

below it.

The conic node rays AB, AC, AD, BC, BD, CD joining the four

nodes A, B, C, D must be represented by the coincidence of

twenty-four straight lines as follows :



VI] TWENTY-SEVEN REAL STRAIGHT LINES 93

23, 1, 15, 24; 14, 21, 18, 11; 12, 27, 16, 2; 17, 9, 13, 26;

3, 19, 20, 7
;
and 10, 22, 25, 8.

The remaining lines 4, 5, 6 are the transversals.

Take Cartesian coordinates, the lines 4, 5, 6 being the

intersections of the three planes x = 0, 2x + y = 6, and y
with z 0, the equations to the planes of the tetrahedron ABCD

being

Suppose, then, the surface to be represented by cutting away
portions of a solid block, it will be found impossible to represent

the whole of the surface without causing solid portions to hide

other parts from view.

In the photographs of the model which are here given, much
of the surface has been cut away to allow of the nodes B, C, D

being seen, while the part above B has not been constructed.

The horizontal section of the surface below D consists of

an oval and three infinite branches. The oval has upon it four
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given points, namely the intersections of the plane with the node

lines CA, CB, AD, and BD, but AB and CD meet it on two of the

infinite branches.

The horizontal section through D has a node at D in which

the oval joins one of the infinite branches.

Horizontal sections, below C but above D, again consist of an

oval and three infinite branches. The three conic node rays AC,

BC, and DC meet these sections in the oval, the remaining rays

meeting it on the infinite branches.

Above C, but below the plane of the transversals, the hori-

zontal sections are of the same kind as those between C and D,

except that, as the sections approach the plane of the transversals,

the shape of the section approximates to three straight lines.

When the horizontal section coincides with the plane of the

transversals, it consists of the three straight lines numbered

4, 5, 6
;

4 is seen on figure 1 2, it passes under a kind of saddle

soon after meeting BD, it meets 5 and then AC as seen in

figure 13, it next cuts 6 passing under another saddle-shaped

portion of the surface.

5 may be traced by first taking figure 13; it meets AD, then 4,

next BC (figure 12); after meeting 6 it passes to the back of the

solid portion on the right of figure 12.

6 is only seen on figure 12. The number 6 on figure 13

indicates the point at which it cuts the section, for in figure 13
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the line 6 slopes inwards to the left and is completely hidden by
the surface : it meets AB and CD.

We observe that in horizontal sections the tangents at the

points in which AC and BD meet them are parallel to 4, at

the points in which AD and BC meet them are parallel to 5, and

at the points in which AB and CD meet them are parallel to 6,

except at the nodes.

Suppose we denote the triangle formed by 4, 5, 6 by the

letters L, O, M.

Produce LM to E, ML to F, OL to G, LO to H, OM to K, and

MO to Q.

In a section parallel to the plane of the transversals, and

just below it, the section consists of an oval nearly coincident

with the triangle LOM, and three infinite branches nearly co-

incident with the straight lines containing the angles QOH, KME
and GLF.

In a section just above the plane of the transversals, we
have three infinite branches nearly represented by EM, MO, OH

;

KM, ML, LG, and FL, LO, OQ.

Above the plane of the transversals the horizontal sections

are generally similar in character to those below but in the

reverse order, and solid portions are now represented by cor-

responding hollow portions; for example, between C and D as

we have seen, horizontal sections consist of an oval cut from

a conical solid and three infinite branches cut from three infinite

solid portions, but between A and B we find a hollow oval, and

three infinite hollow branches.

The only exception is that part of the surface immediately
above the plane of the transversals, but below B. This part

of the surface when cut by horizontal sections gives three

infinite branches but no oval.



CHAPTER VII.

OX NODES.

IT has been shewn that a surface generated by three protective

pencils, by the intersection of three corresponding planes, is such

that if any straight line lies on the surface, any plane section

through the line consists of this straight line and a conic. We
.find also that if four points on the surface lie on a straight line,

then this straight line lies entirely in the surface. If the pro-

jectivity of the pencils be determined by four non-intersecting

straight lines, these lines obviously lie on the surface.

Reye's methods do not lead to the consideration of conic

nodes, for he is careful to state that the six non-intersecting lines

of a double six cannot meet a plane on a conic, which of course

is true provided the lines do not intersect. But if they meet

at a point we get a conic node, and the lines do meet any plane
on a conic.

We could however define a cubic surface as one on which

a certain number of straight lines lie (suppose we say three

straight lines which form a plane triangle), and is such that

every section through a straight line is made up of this line and

a conic. It would then be necessary by Reye's methods to

shew that there is such a surface.

This could be done, as on pages 31 to 48.

By taking five straight lines that meet one straight line, but

which do not themselves intersect, and through them drawing a
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cubic surface (p. 40), we find the complete scheme of lines on

the surface. The converse of this proposition, that any cubic

surface has such a scheme of lines, involves Reye's proof (p. 43).

Next, we may state that either a double six or the remaining
fifteen lines are sufficient to determine the surface.

This is evident either by analysis or geometrically : (1) by

analysis, for on pages 4 and 25 it was shewn that nine of these

lines (in the case of the fifteen), together with a point on a tenth,

give all the necessary constants ; and (2) geometrically, because

any plane section through one of the lines meets more than five

lines on the surface independently of the first, and these points
fix the conic that completes the section.

Suppose then we have fifteen straight lines that intersect

one another according to the table of reference of the lines 1

to 15.

It is evident that when we come to draw two straight lines

to meet four of these lines that do not intersect (see p. 50), these

lines may become coincident.

Again, if we draw any plane to intersect the system of lines,

and remember that three straight lines in a plane cut this plane
in three points in a straight line, the coincidence of two such

lines is found to involve the coincidence of any pair drawn to

meet any set of four non-intersectors.

Further, as on page 56, we can shew that these coincident

pairs form six rays that lie on a cone. The surface about the

point at which these six rays meet is clearly of the shape of

a quadric cone. This is also evident from the coincidence of

sections about a line that form a plane triangle. (See page 100.)

Next, no conic node can occur except at the intersection

of straight lines on the surface, for we may take it as evident

that every plane section through a conic node has a node at

that point. Take any straight line on the surface which does

not pass through the node, and draw a plane through this line

and the conic node. Then the conic that with the straight line

makes up the section has a node at the conic node. But the

B.
"



98 ON NODES [CH.

only conic that has a node is a pair of straight lines, therefore

the section must consist of three straight lines, two of which

intersect at the conic node.

If we look at the model of any cubic surface having twenty-
seven real straight Hues, we note the results otherwise obtained

by Zeuthen's scheme (p. 22).

There are four holes or openings ;
also if we suppose every

part of the model that is hollow to become solid, and vice versa,

we still have four holes lying between the former ones.

Through each hole, in either case, passes a double six.

The first kind of alteration that may take place is the

contraction of a hole to a point. Hence we find, as before,

that a double six passes through a point. We next take a

second node due to the contraction of another hole, and in the

same way arrive at the cases of three and four conic nodes.

Next, suppose that in the case of one conic node, the node

moved up to one of the adjoining portions of the surface. Then

the node disappears as a conic node, and its rays must become

coincident with lines on the adjoining portion.

Comparing this result with the table of reference, we see

that if any rays of a conic node coincide with any of the

remaining lines, e.g. r.
t
with 1, then the triangle t\r2 l must

become r1
r.2r3 .

Therefore three rays lie in one plane.

Comparing this with the results obtained by taking plane

sections through a straight line we find, as before, that for a

conic node two sections have coincided, and for a binode three

have become coincident.

If three rays lie in one plane, and we have shewn that the

six rays lie on a cone, it is clear that any transverse section

of this cone has degenerated into two straight lines, and the

remaining three rays lie in a plane.

This agrees with what we know of the binode B3 .

Next let the part of the surface upon which the binode lies

contract to the shape of the vertex of a cone. It is evident
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that we obtain the same result by first supposing that we have

two conic nodes and letting these coincide.

The table of reference reduces to that given for B
4 ,

while the

model shews that one hole has disappeared.
The changes for B3 can be found exactly in the same way, by

supposing B4 to move up to another part of the surface, and the

conical form disappears.

B, ; may be derived from B5 as B4 was from B3 ,
or otherwise

by the coincidence of three conic nodes, and another hole has

disappeared.

It has been shewn (p. 5) that we usually have five plane
sections passing through a straight line that degenerate into

plane triangles.

Further, if two of these sections move up to one another and

coincide, the vertex of the triangle (the given line being con

sidered as base) becomes a conic node (p. 10).

Suppose a third triangular section to move up to and coincide

with the two that have already coincided, then any section taken

first in one direction and then in the other about the line near

the node, obeys the same law as if there had been no coincidence.

In other words, in one direction we have sections such as 5C,

and in the other 5B (Chapter vi.) for a small displacement. The

surface about the vertex does not now approximate to a cone of

the second degree.

If, however, a fourth section moves up to and coincides with

the other three, it is clear that the sections now taken through
a small angle in either direction are of the same form, that is

either both as 5C or 5B.

The surface again is conical in form about the vertex.

The following scheme will shew this more clearly. If we

neglect other changes such as from parabola to ellipse, regarding

only the changes to sections of the form of plane triangles, the

order must be CABACAB .... (See figure 5, Chapter vi.)

Now if the first and second triangular sections A coincide,

the B between them disappears; we then have CACAB .... The
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form of the section taken in either direction through a small

angle about the line is of the form C, therefore it is evident that

the shape of the surface about the vertex of the triangle is like

that of the vertex of a cone of the second degree.

Let this triangular section coincide with the third A, the C

between them disappears, and we have CAB .... If the section

now revolves about the line, the order of sections is the same as

at first.

The coincidence of lines on the surface always implies co-

incidence of sections. This will be seen from the tables of

reference.

The number of nodes that can exist upon the surface, with

all possible combinations of them, may be found from the

equation to the surface by considering the number of constants

at our disposal, but there is an interesting way of doing this

from the table of reference, only allowing that not more than

three straight lines may lie in one plane section of the surface,

and that not more than two intersecting straight lines may meet

four non-intersectors.

These coincidences have been traced in forming the different

tables of reference in Chapter I.

If we attempt to let lines coincide in any other order, we

obtain no new results but some of the series may be omitted.

When the straight lines on the surface become imaginary,

the effect on a model of the surface is generally to diminish the

number of holes or openings, and to cause parts of the surface

that extended to infinity when the lines were real to become

limited in extent. (See p. 22.)

To illustrate this, take a cubic surface that approximates to a

plane and a sphere, for example one the equation to which is

z (y? + y
2 + z2 a2

) + A + By + Cz+ D = 0,

where A, B, C, D are small.

The sections through the centre of the sphere and per-

pendicular to the plane z = 0, very nearly approximate to 5E
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(Chapter vi.), with an opening in some positions as in figure 8

(Chapter vi.). But comparing with these figures 7 and 8

(Chapter vi.), instead of an infinite conical solid above and an

infinite conical hollow below, we find the upper solid portion
is approximately a solid hemisphere, and the lower portion a

hollow hemisphere.
To compare with surfaces of the second degree, hyperboloids

become ellipsoids when straight lines on the surface become

imaginary.
However a cubic surface cannot be limited in every direction,

for every plane section is a plane cubic curve, and every straight
line meets a cubic curve in one real point, including points at

an infinite distance. For instance, in the above surface we have

an infinite sheet with elevations and depressions, but very nearly

coinciding with z 0.

What we do not get at infinity comparing with the models

in Chapter vi. where the lines are real, is the central ovals, the

hemispherical portions being limited in extent.

A model is here given of a surface having a binode B5 . The

lines on it correspond to the table of reference on page 12.

1 2

Figures 1 and 2 are two views of the model when placed

upon a table, but in figure 3 the under part of the model is

shewn.

73



102 ON NODES [CH.

In figure 2 we see the remaining hole.

Figures 1 and 3 shew the fold of the surface at the binode,

so that plane cubics through the binode have cusps at the node.

A good plaster model of a surface having three binodes B
3
is

exhibited at the South Kensington Museum.

Its equation is

(x + y + z - a)
3 = xyz

in rectangular Cartesian coordinates.

The central vertical line is x = y = z.

The nodes are the intersection of the axes with

The section (figure 4) is a vertical section through one of the

axes, shewn by the dotted line.

The horizontal line through the node in the figure bisects the

straight line joining the other two nodes, 011 the surface.

On the right the curve continually ascends, marking the line

of greatest elevation of a ridge, while on the left it marks a line

of greatest depression.

The surface is symmetrical, so that horizontal sections are all

of the form described on page 70.

Above the point at which the vertical through the origin

cuts the curve (figure 4), a horizontal section has no oval, it
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only has three in6nite solid hyperbolic branches cut from the

elevated portions.

When the section plane moves lower, we have an oval and

three infinite solid branches till we reach the plane of the

nodes.

There the section is triangular, as 5A, Chapter vi., the

infinite branches becoming connected with the central oval

(now a triangle).

Below the plane of the nodes we have three hollow hyperbolic

branches but no oval.

As the surface is symmetrical, the equations to all horizontal

sections are of the form given on page 68.

We find that they are

3
(a; -p) y*

= x* + 3x>p
- p

3 + 108 (p
-

I)
3
,

where p is found by dividing by v 2 the height of the section

above the original origin, which is at a depth below the plane

of the nodes a -4- v3.

We find I from a =

If we express the equation to the section in figure 4 in

Cartesian coordinates, the node being the origin and axes hori-

zontal and vertical, we find the values of the ordinate y involve
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\/2, but if we suppose the values of y divided by v2, the equation
becomes

(a;
-

21)* (x + 3y + l)-t(y + If + 1(%3 = 0.

To trace the curve, then, we find a sufficient number of values

of y from this equation corresponding to given values of x, and

multiply the results by \/2 to find the true ordinates.

When y = 0, x = 31
;
when x = 0, y -$1 ;

when x - 21, y = l;

and when y = I, x = 21 + 31 ^/2.

[The results for y are to be multiplied by \/2.]

The coordinates x = 21, y- 2*/2 mark the highest point of

the central portion, vertically above the original origin ;
its

coordinates being 21, l*J'2.

The surface consists of one infinite sheet having three elevated

ridges with a corresponding depressed portion between each.

These may be seen, though not symmetrical, in the figure of the

second sheet of the cone at the commencement of Chapter iv.

Instead of running in to the- centre, as in the cone, the elevated

portions terminate at the nodes as shewn in figure 4, while the

depression opposite begins at the middle point of the opposite

side.

The central portion is somewhat like a spherical triangle

having the nodes at the angles.
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3149
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Solid and hollow parts of the sur-

face in Models, Chap, rv, 6366
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Symmetrical sections, 69, 70

Tables of Reference of lines and
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Tables of Reference of lines and
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CAMBRIDGE : PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRKSS.







\



UNIVERSITY OF CALIFORNIA AT LOS ANGELES

THE UNIVERSITY LIBRARY
This book is DUE on the last date stamped below

Form L-9-20Hi-8,'37

CAL1FOK
AT

LOS ANGELES
LIBRARY



A 000165658 6

.(.72




